深度学习500问——Chapter08:目标检测(7)

2024-05-04 16:12

本文主要是介绍深度学习500问——Chapter08:目标检测(7),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

8.3.8 RFBNet

8.3.9 M2Det


8.3.8 RFBNet

RFBNet有哪些创新点

1. 提出RF block(RFB)模块

RFBNet主要想利用一些技巧使得轻量级模型在速度和精度上达到很好的trade-off的检测器。灵感来自人类视觉的感受野结构Receptive Fields(RFs),提出了新奇的RF block(RFB)模块,来验证感受野尺寸和方向性的对提高有鉴别器鲁棒特征的关系。RFBNet是以主干网络(backbone)为VGG 16的SSD来构建的,主要是在Inception的基础上加入了dilated卷积层(dilated convolution),从而有效增大了感受野(receptive field)。整体上因为是基于SSD网络进行改进,所以检测数据还是比较快,同时精度也有一定的保证。

RFB介绍

RFB是一个类似Inception模块的多分支卷积模块,它的内部结构可分为两个组件:多分支卷积层和dilated卷积层。如下图:

1. 多分支卷积层

根据RF的定义,用多种尺寸的卷积核来实现比固定尺寸更好。

具体设计:

① 瓶颈结构,1x1-s2卷积减少通道特征,然后再加上一个nxn卷积。

② 替换5x5卷积为两个3x3卷积去减少参数,然后是更深的非线性层。有些例子,使用1xn和nx1来代替nxn卷积层;shortcut直连设计来自于ResNet 和Inception ResNet V2。

③ 为了输出,卷积经常有stride=2或者是减少通道,所以直连层用一个不带非线性激活的 1x1 卷积层。

2. Dilated 卷积层

设计灵感来自Deeplab,在保持参数量和同样感受野的情况下,用来获取更高分辨率的特征。下图展示两种RFB结构:RFB和RFB-s。每个分支都是一个正常卷积后面加一个dilated卷积,主要是尺寸和dilated因子不同。

(a)RFB。整体结构上借鉴了,Inception的思想,主要不同点在于引入3个dilated卷积层(比如3x3conv,rate=1),这也是RFBNet增大感受野的主要方式之一;

(b)RFB-s。RFB-s和RFB相比主要有两个改进,一方面用 3x3卷积代替 5x5 卷积,另一方面用 1x3 和 3x1卷积代替3x3卷积层,主要目的应该是为了减少计算量,类似Inception后期版本对Inception结构的改进。

RFBNet300的整体结构图如下所示,基本上和SSD类似。RFBNet和SSD不同的是:

1. 主干网络是用两个RFB结构替换原来新增的两层。

2. conv4_3 和 conv7_fc 在接预测层之前分别接 RFB-s 和RFB结构。

8.3.9 M2Det

M2Det有哪些创新点

1. 提出了多层次特征金字塔网络(MLFPN)来构建更有效的特征金字塔,用于检测不同尺度的对象。

M2Det的整体架构如下所示。M2DNet使用backbone和多级特征金字塔(MLFPN)从输入图像中提取特征,然后类似于SSD,根据学习的特征生成密集的边界框和类别分数,最后是非最大抑制(NMS)操作以产生最终结果。MLFPN由三个模块组成:特征融合模块(FFM),简化的U形模块(TUM)和按基于尺度的特征聚合模块(SFAM)。FFMv1通过融合骨干网络的特征图,将语义信息丰富为基本特征。每个TUM生成一组多尺度特征,然后交替连接的TUM和FFMv2提取多级多尺度特征。此外,SFAM通过按比例缩放的特征连接操作和自适应注意机制将特征聚合到多级特征金字塔中。下面介绍有关M2Det中三个核心模块和网络配置的更多详细信息。

FFMs

FFM融合了M2Det中不同层次的特征,这对于构建最终的多级特征金字塔至关重要。它们使用 1x1 卷积层来压缩输入特征的通道,并使用连接操作来聚合这些特征图。特别是,由于FFMv1以backbone中不同比例的两个特征图作为输入,因此它采用一个上采样操作,在连接操作之前将深度特征重新缩放到相同的尺度。同时,FFMv2采用基本特征和前一个TUM的最大输出特征图-这两个具有相同的比例-作为输入,并产生下一个TUM的融合特征。FFMv1和FFMv2的结构细节分别如下图(a)和(b)所示。

TUMs

TUM不同于FPN和RetinaNet,TUM采用简化的U形结构,如上图(c)所示。编码器是一系列3x3,步长为2的卷积层.并且解码器将这些层的输出作为其参考特征集,而原始FPN选择ResNet主干网络中每个阶段的最后一层的输出。此外,在解码器分支的上采样层后添加1x1卷积层和按元素求和的操作,以增强学习能力并保持特征的平滑性。每个TUM的解码器中的所有输出形成当前级别的多尺度特征。整体而言,堆叠TUM的输出形成多层次多尺度特征,而前TUM主要提供浅层特征,中间TUM提供中等特征,后TUM提供深层特征。

SFAM

SFAM旨在将由TUM生成的多级多尺度特征聚合成多级特征金字塔,如下图所示。SFAM的第一阶段是沿着信道维度将等效尺度的特征连接在一起。聚合特征金字塔可以表示为X = [X_1,X_2,...,X_i,...,X_L],其中

X_i=Concat(X_{xi},X_{2i},...,X_{Li})\in R^{W_i\times H_i \times C}

指的是尺度第i个最大的特征。这里,聚合金字塔中的每个比例都包含来自多级深度的特征。但是,简单的连接操作不太适合。在第二阶段,引入了通道注意模块,以促使特征集中在最有益的通道。在SE区块之后,使用全局平均池化来在挤压步骤中生成通道统计z∈RC。

这篇关于深度学习500问——Chapter08:目标检测(7)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959598

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操