模式识别作业:颜色算子的三种阈值分割算法

2024-05-04 09:12

本文主要是介绍模式识别作业:颜色算子的三种阈值分割算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言:

在图像处理中,我们往往需要提取图像的一些关键信息,比如本篇文章的内容——提取颜色,然而当我们需要提取某一种颜色时,无论图像余下的部分如何“丰富多彩”,他们都不再重要,需要被忽略,我们称其为“背景”。此时我们只需要黑白图像就可以清晰的展示出需要提取的颜色。我们往往将每个像素点的灰度值转换为0或1,表示黑色或白色,从而将图像转换为黑白二色,这样的图像被称为二值化图像

借助 OpenCV 的 inRange 函数我们就可以根据阈值提取满足条件的像素。

二、RGB 颜色阈值算子

1 RGB空间:

还记得第一篇文章提到的张量么,一张彩色图片可以看作一个三阶张量,即一张彩色图像是由红,绿,蓝三张图片叠加成的,每张图片的有无数的像素点,每个像素点的值域为0~255来表示颜色深浅。这就是最常用的三通道颜色空间,RGB空间。

2 代码实现:

import cv2
import numpy as npdef color_threshold(image, lower_threshold, upper_threshold):"""RGB颜色阈值算子参数:- image: 输入的RGB图像- lower_threshold: 低阈值,为一个包含三个元素的列表或元组,分别对应BGR通道的最小值- upper_threshold: 高阈值,为一个包含三个元素的列表或元组,分别对应BGR通道的最大值返回值:- thresholded_image: 经过阈值处理后的二值图像"""# 使用OpenCV的inRange函数根据阈值提取满足条件的像素thresholded_image = cv2.inRange(image, np.array(lower_threshold), np.array(upper_threshold))return thresholded_image# 主函数
if __name__ == "__main__":# 读取输入图像input_image = cv2.imread("leaf.jpg")# 定义颜色阈值lower_threshold = [0, 100, 0]  # 低阈值,例如,过滤掉B通道小于0,G通道小于100,R通道小于0的像素upper_threshold = [50, 255, 50]  # 高阈值,例如,过滤掉B通道大于50,G通道大于255,R通道大于50的像素# 应用颜色阈值算子thresholded_image = color_threshold(input_image, lower_threshold, upper_threshold)# 显示原始图像和处理后的二值图像cv2.imshow("Original Image", input_image)  # imshow用于新建弹窗显示图像cv2.imshow("Thresholded Image", thresholded_image)cv2.waitKey(0)  # 保留弹窗直至检测到其他键盘操作cv2.destroyAllWindows()

3 运行结果:

三、HSV 颜色阈值算子

1 HSV空间:

HSV空间指的是色彩空间中的一种,由色相(Hue)、饱和度(Saturation)和明度(Value)三个要素组成。色相表示颜色的基本属性,饱和度表示颜色的纯度或深浅程度,而明度则表示颜色的亮度。

2 代码实现:

import cv2
import numpy as npdef hsv_threshold(image, lower_hsv, upper_hsv):"""使用HSV颜色空间进行颜色阈值分割参数:image: 输入的RGB图像lower_hsv: HSV颜色空间下的下限阈值,格式为(H_MIN, S_MIN, V_MIN)upper_hsv: HSV颜色空间下的上限阈值,格式为(H_MAX, S_MAX, V_MAX)返回:thresholded_image: 分割后的二值图像"""# 将RGB图像转换为HSV颜色空间hsv_image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# 设置阈值范围lower = np.array(lower_hsv)upper = np.array(upper_hsv)# 根据阈值进行二值化处理thresholded_image = cv2.inRange(hsv_image, lower, upper)return thresholded_image# 主函数
if __name__ == "__main__":# 读取图像image = cv2.imread("apple.jpg")# 定义想要提取的HSV颜色范围lower_colour = (40, 100, 100)upper_colour = (80, 255, 255)# 使用阈值算子分割图像colour_threshold = hsv_threshold(image, lower_colour, upper_colour)# 显示原始图像和分割后的图像cv2.imshow("Original Image", image)  # imshow用于新建弹窗显示图像cv2.imshow("colour Threshold", colour_threshold)cv2.waitKey(0)  # 保留弹窗直至检测到其他键盘操作cv2.destroyAllWindows()

3 运行结果:

四、CIE Lab 颜色阈值算子

1 lab空间:

LAB空间是一种色彩空间,也称为CIE LAB色彩空间。它包含三个坐标轴:L表示亮度(Lightness),a表示从洋红色(红色的负轴)到绿色(绿色的正轴)的范围,b表示从蓝色(蓝色的负轴)到黄色(黄色的正轴)的范围。

2 代码实现:

import numpy as np
import cv2def lab_color_threshold(image, lower_bound, upper_bound):"""使用CIE Lab颜色空间进行阈值分割参数:image: 输入的RGB图像lower_bound: 一个包含3个元素的列表,表示颜色的下界(L, a, b)upper_bound: 一个包含3个元素的列表,表示颜色的上界(L, a, b)返回:thresholded: 二值图像,仅包含在指定颜色范围内的区域"""# 将RGB图像转换为CIE Lab颜色空间lab_image = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)# 提取L、a、b通道L, a, b = cv2.split(lab_image)# 创建空的二值图像thresholded = np.zeros_like(L)# 将颜色通道与阈值进行比较,生成二值图像within_bounds = (lower_bound[0] <= L) & (L <= upper_bound[0]) & \(lower_bound[1] <= a) & (a <= upper_bound[1]) & \(lower_bound[2] <= b) & (b <= upper_bound[2])# 将满足条件的像素设置为255(白色)thresholded[within_bounds] = 255return thresholded# 主函数
if __name__ == "__main__":# 读取图像image = cv2.imread("apple.jpg")# 设置阈值范围(这里使用的是示例值,你可以根据需要调整)lower_bound = [0, 128, 128]  # L, a, b 的下界upper_bound = [255, 255, 255]  # L, a, b 的上界# 应用颜色阈值算子thresholded_image = lab_color_threshold(image, lower_bound, upper_bound)# 显示结果cv2.imshow("Original Image", image)  # imshow用于新建弹窗显示图像cv2.imshow("Thresholded Image", thresholded_image)cv2.waitKey(0)  # 保留弹窗直至检测到其他键盘操作cv2.destroyAllWindows()

3 运行结果:

五、优缺点对比

1 RGB优缺点:

(1)优点:

  1. 直接对应于显示器和相机的工作原理,易于理解和实现。
  2. 在处理彩色图像时,RGB是一种直观的颜色表示方式。

(2)缺点:

  1. RGB模型对光照和阴影等因素较为敏感,不太适合于需要考虑光照条件的任务。
  2. RGB模型下的颜色值不够直观,不易于对颜色的特性进行准确描述。
  3. 某些情况下,RGB模型下的颜色空间变换不够灵活,无法有效地处理一些特定的颜色操作。

2 HSV优缺点:

(1)优点:

  1. HSV模型更符合人类对颜色的感知,色相、饱和度和明度的概念更直观。
  2. 色相分量可以独立于光照条件而保持不变,因此HSV对光照条件的影响较小。
  3. 在某些任务中,如颜色识别和区分不同颜色的对象,HSV模型可能更有效。

(2)缺点:

  1. HSV模型的计算量较大,不够简洁高效,对计算资源要求较高。
  2. HSV模型不是设备无关的,可能会受到设备性能和环境光照的影响。
  3. 在一些情况下,HSV模型下的颜色分布不均匀,可能导致某些区域难以区分或处理。

3 LAB优缺点:

(1)优点:

  1. LAB模型是一种设备无关的颜色空间模型,颜色值在不同设备和环境下保持一致。
  2. LAB模型更符合人类视觉系统的感知特性,对颜色的描述更准确。
  3. LAB模型可以很好地处理颜色校正和颜色匹配等任务。

(2)缺点:

  1. LAB模型的数学计算较复杂,相比RGB和HSV模型,计算量较大。
  2. 有时,LAB模型下的颜色表示不够直观,不够直观地反映颜色在图像中的分布情况。
  3. 由于LAB模型对颜色的描述较为细致,可能会导致在某些情况下对颜色的处理和分析更加复杂。

这篇关于模式识别作业:颜色算子的三种阈值分割算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958856

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯: