【深度学习】第一门课 神经网络和深度学习 Week 4 深层神经网络

2024-05-04 06:20

本文主要是介绍【深度学习】第一门课 神经网络和深度学习 Week 4 深层神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🚀Write In Front🚀
📝个人主页:令夏二十三
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝
📣系列专栏:深度学习
💬总结:希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🖊

文章目录

4.1 深层神经网络概述

 4.2 前向传播和反向传播

4.2.1 前向传播

4.2.2 反向传播

 4.5 使用深层表示的原因

4.7 参数和超参数


4.1 深层神经网络概述

深层神经网络,其实就是在浅层神经网络这篇文章中提到的示例的基础上增加隐藏层数量罢了,没有本质的区别:

 4.2 前向传播和反向传播

4.2.1 前向传播

前向传播很简单,就是从左到右的计算罢了,使用向量化计算的话,就是先喂入神经网络第一层的输入值,也就是 A[0] ,一整个训练样本的输入特征,这就是这条链的第一个前向函数的输入,重复这个步骤就可以计算出这个神经网络的前向传播结果了。

4.2.2 反向传播

从右到左,逐步计算导数,这就是反向传播,步骤如下:

下面用智谱总结一下前向传播和反向传播的目的:

神经网络中的前向传播(Forward Propagation)和反向传播(Back Propagation)是训练神经网络的两个关键过程。

前向传播的目的是为了计算神经网络的输出。在监督学习的情况下,给定的输入数据通过神经网络各层的加权运算和非线性激活函数的作用,最终得到预测结果。这一过程是逐层进行的,每层神经元的输出成为下一层的输入,直到最后一层输出结果。前向传播可以理解为神经网络对输入数据的响应过程,它展示了网络在当前权重和偏置参数配置下如何处理信息。

反向传播的目的是为了调整神经网络的参数(即权重和偏置),使得神经网络的预测结果更接近于真实标签。在计算出前向传播的预测结果后,通过比较预测结果和真实结果之间的差异(即损失函数),反向传播算法计算这些差异如何影响网络的每一层参数。基于这些计算,使用梯度下降等优化算法来调整网络参数,目的是减少损失函数的值,提高模型的性能。反向传播是神经网络能够从错误中学习并逐步改进的关键机制。

总结来说,前向传播是神经网络进行预测的过程,而反向传播则是神经网络学习的过程。两者共同作用,使得神经网络能够通过训练数据不断优化自身参数,提高预测的准确性。

 4.5 使用深层表示的原因

深度神经网络之所以通常需要一定深度的层次结构,主要是因为深度结构能够提供以下几个优势:

  1. 特征层次化:深度神经网络能够通过多个隐藏层逐步将输入数据从原始特征转换成更高层次、更抽象的特征表示。每一层都可以学习到不同层次的特征,例如,第一层可能只识别边缘和纹理,而更高层则能识别复杂的对象结构。这种层次化的特征学习是深度学习相比于浅层学习的一个重要优势。

  2. 非线性建模能力:由于每个隐藏层都使用了非线性激活函数,深度神经网络能够建模非常复杂的函数。深度网络可以通过组合多个非线性变换来捕捉输入和输出之间复杂的关系。

  3. 参数共享和泛化:在深度网络中,尤其是在卷积神经网络中,参数是通过在输入数据的多个位置共享来减少模型参数数量的。这种参数共享不仅减少了过拟合的风险,还提高了模型对未见数据的泛化能力。

  4. 层次化的表征:深度网络能够学习到数据的层次化表征,这种表征可以捕捉到数据中的内在结构和分布。这种层次化表征有助于网络在不同的抽象层次上理解和处理信息。

  5. 复杂的决策边界:在分类问题中,深度网络能够学习到非常复杂的决策边界,这对于处理高度重叠的分类问题非常有用。

然而,并不是所有问题都需要非常深的网络。有些问题可能比较简单,使用浅层网络就足够了。深度网络的训练通常需要更多的数据和计算资源,并且可能更难以调试。因此,选择网络的深度需要根据具体问题的复杂性和可用的资源来决定。在实际应用中,通常会通过实验来确定最佳的网络结构。

4.7 参数和超参数

在深度神经网络中,参数和超参数是两个不同的概念:

参数(Parameters): 参数是神经网络模型内部的变量,它们是模型通过训练数据学习到的。参数决定了神经网络如何将输入映射到输出。在监督学习中,这些参数是通过优化过程(如梯度下降)调整的,以便模型能够更好地拟合训练数据。主要的参数包括:

  • 权重(Weights):连接神经网络的每个神经元之间的数值,它们决定了信息在网络中的传递强度。
  • 偏置(Biases):加到每个神经元输出上的常数,它们允许模型输出不为零,即使输入全部为零。

在训练过程中,目标是最小化损失函数,这通常是通过更新权重和偏置来实现的。

超参数(Hyperparameters): 超参数是模型外部的配置参数,它们不是通过训练数据学习到的,而是由研究人员或工程师设置的。超参数决定了模型的架构、学习过程和训练方式。超参数的选择对模型的性能有重要影响,通常需要通过实验和经验来确定。主要的超参数包括:

  • 学习率(Learning Rate):在参数更新过程中,决定参数更新步长的数值。
  • 批量大小(Batch Size):在每次参数更新中使用的数据样本数量。
  • 迭代次数(Number of Epochs):在整个数据集上运行梯度下降的次数。
  • 网络层数(Number of Layers):神经网络中隐藏层的数量。
  • 每层的神经元数量(Number of Neurons per Layer):每个隐藏层中神经元的数量。
  • 激活函数(Activation Functions):用于引入非线性到网络中的函数,如ReLU、Sigmoid或Tanh。
  • 正则化参数(Regularization Parameters):如L1/L2正则化中的惩罚系数,用于防止过拟合。

超参数通常需要通过交叉验证等方式进行调整和优化,以便找到最优的模型配置。与参数不同,超参数的调整不直接涉及损失函数的最小化过程。

这篇关于【深度学习】第一门课 神经网络和深度学习 Week 4 深层神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958514

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个