INVS 对时钟二分频器(reg-clkgen)的理解和处理

2024-05-04 01:44

本文主要是介绍INVS 对时钟二分频器(reg-clkgen)的理解和处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在时钟树的设计中,有很多方式处理分频时钟,常见的无外乎两种模式:

  • 时钟二分频器(reg-clkgen)
  • 门控时钟

二者在功能上略有不同,比较的大差异是前者可以简单的实现50%占空比,后者却对功耗友好同时降低了实现难度。这里结合INVS在CTS的手法,一起了解一下INVS对二者的处理差异。闲言少叙,ICer GO!

在这里插入图片描述

就后端工具而言,CTS是其三大引擎之一,在当下设计的高工艺、高性能的背景下,CTS的重要性越来越凸显,之前项目一键通的CTS方式,已经越来越不能满足日益提升的QoR诉求了。

INVS ccopt 系统简介

INVS在useful skew显然具备强大的优势,其中的ccopt flow,拥有灵活,高效和用户友好等多种特性,其独特的思维方式,给用户在CTS阶段提供了更多的选择和漂亮的QoR数据。

从SDC到ccopt系统转化,让INVS采用一种类似数字孪生(digital twins)的方式,将SDC里边的相关命令,一一映射到ccopt系统中,主要来自于下列三个主命令:

  • create_ccopt_clock_tree <=> create_clock
  • create_ccopt_generated_clock_tree <=> create_gernerated_clock
  • set_ccopt_property <==> other CTS setup

通过这种转义/隔离,巧妙的将ccopt构建成一个CTS warpper,将CTS的实现和SDC进行隔断。这样做的好处有以下几点:

  • SDC里边的配置和设定,可以在ccopt系统里边进行修正和调整,而无需读入CTS专用的SDC
  • CTS的配置通过导出可读文件进行抽取,继承和维护:create_ccopt_clock_tree_spec
  • ccopt_design开始之前,可以灵活使用set_ccopt_property 命令干预ccopt的实现方式,而不用担心对原生的SDC产生影响。

用户可以在CTS阶段,放心大胆的使用ccopt系统。鉴于INVS是全局useful skew策略,即使在CTS之后,用户任然可以使用ccopt命令对CTS结构进行微调(modify),这样在后续的useful skew流程中,INVS仍然会使用ccopt引擎对相关的数据进行调整。

时钟传播的单调性

CTS的实现中,无论是ICC/ICC2还是INVS,都会强调;unate(单调性)

  • unaet:单调传播:譬如:正向单调性的buffer,反向单调性的inveter

  • none-unate:非单调传播:XOR,MUX,FF

具体解释详见博主老文;门控时钟检查(clock gating check)的理解和设计应用(上)

由于每一个sink(sequential leaf)的时钟都是单沿触发(正沿或负沿),CTS阶段的重要目标就是计算每一个sink的latency,从而对用户的max_skew进行收敛,所以这个传播的单调性(unate)对CTS的影响就很明显:

image-20240503160306114

可以看到,在FF1的传播路径上,CLK时钟是正单调性,这样计算CLK-> FF1’CK的路径的时候CTS工具会只会看正沿。但是到了CLK->FF2’CK的路径上,由于XOR的none-unate特性,CTS工具计算latency的时候需要同时关注正相关和负相关的两种情况,在late和early的两种corner的影响下,这个计算量会成倍的增加,同时也会对实际的clock tree做了悲观化。因为实际情况下:XOR的enable大概率是一个半静态信号,这个会间接提高CTS的难度。由于设计的不明确性,可以用过约束来归类这种问题。

时钟二分频器(reg-clkgen)和CG

从上述时钟CTS实现的角度来看,基于寄存器的时钟二分频器(reg-clkgen)是典型的none-unate器件,而通常的CG则是一个典型的unate器件。所以,从时钟树构建的上看,CG是一个被推荐的时钟网络结构,但时钟二分频器(reg-clkgen)不是的。

由于CG的结构类似下列:

image-20240503163614279

通常CG的尾部是一个or或者一个and,在std-lib中,这两类门很常见,通常会有很多种驱动类型,这种正是CTS需要的风格:功能单一,驱动多样,这个对于构建CTS会非常友好。

反观寄存器,相较or/and,不会有这么多的选择类型,加之延迟较大,这个也会间接影响clock latency的质量

时钟二分频器的CTS实现

对于传统的组合逻辑,CTS实现无非面临两种选择:

  • 单调性传播:AND,OR,CG, BUF, INV
  • 非单调性传播:MUX、 XOR 。、

这样的传播的简单之处在于:由于是组合逻辑,时钟可以一路传播,不会被阻挡。但是对于采用寄存器实现的时钟二分频器(reg-clkgen),由于FF在CTS的传统理解下是属于一个sink器件,时钟的传播会自动在sink器件截止,所以任何穿越FF的时钟都需要用户单独定义。

# root clock
create_clock -name CLK [get_port CLK] -period 1 -waveform {0 0.5}
# generated clock
create_generated_clock -name gen_clk1 -source [get_port CLK] -divided_by 2 -master_clock [get_clock CLK]  [get_pin FF1/Q]

image-20240503173533846

对于上述拓扑结构,CTS的难点不在于divided信号,而在于gen_clk1_enable。

众所周知,从CLK向下看,FF1/FF_A/FF_B同属于CLK domain,但是由于FF1的特殊性,会导致FF1‘D上的时序会成为一个gen_clk1时钟路径上的检查点,这个有点像clock gating检查,但又不全是。

对于传统的CG检查,INVS有自己独到大处理方式。对于这类检查,INVS提供了一个有趣的配置选项:

image-20240503174148569

这个extract_clock_generator_skew_groups的选项是说:

如果配置为true(default value),那么ccopt在创建clock_tree_spec的时候,除过正常的基于clock的-auto_sink模式进行skew_group创建,还会基于ff_clkgen结构的分频时钟(时钟二分频器)再独立创建一个使用 _clock_gen打头的新的skew_group,这个SG会包括这个ff_clkgen的所有fanin以及它自己,和原始的SG相比,这个SG拥有更高的优先级。

create_ccopt_skew_group -name CLK_SG -source clk -auto_sinks
create_ccopt_skew_group -name _clock_gen_CLK_FF1_SG -source clk -sinks {FF_A FF_B FF1} -rank 1

这种处理方式需要用户格外注意,如果用户拥有类似下列更为复杂的拓扑结果,INVS默认的处理方法可能并不适用于你的设计:

image-20240503181443638

由于这里会有下列的timing path

  • FF_A/FF_B -> FF1
  • FF_A/FF_B/FF1 -> FF3/FF4

从CTS角度而言,上述FF需要统一做平,如果使用了默认的INVS处理方式,可能会产生意想不到的结果。如果不想使用默认SG的处理方式,请将这个变量设定为false。

个人理解**:从INVS而言,上述拓扑结构应该是不是一个典型的设计:既然已经是ff_genclk的enable信号了,那么就应该是一个类似半静态信号,这个不应该是一个关键路径,反言之,这个半静态信号,更应该专注于gen_clk1的生成,而非其他用途。同样FF1既然是一个gen_clk的定义点,那就不应该出现clk2data的情形。一个比较合理的设计应该类似下图:**

image-20240503181520101

但是,在当今百家争鸣的年代,已经很少看到有人可以静下心来仔仔细细的研究coding style了,这个时候还想TO,那么灵活运用后端工具进行补刀,可能是一种适应当下情景的变通方式吧。

【敲黑板划重点】

image-20240503184222477

灵活使用ccopt,而不是简单的一路回车,可能会去的意想不到的收获

参考资料

Cadence Innovus User Guide

这篇关于INVS 对时钟二分频器(reg-clkgen)的理解和处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958093

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

深入理解数据库的 4NF:多值依赖与消除数据异常

在数据库设计中, "范式" 是一个常常被提到的重要概念。许多初学者在学习数据库设计时,经常听到第一范式(1NF)、第二范式(2NF)、第三范式(3NF)以及 BCNF(Boyce-Codd范式)。这些范式都旨在通过消除数据冗余和异常来优化数据库结构。然而,当我们谈到 4NF(第四范式)时,事情变得更加复杂。本文将带你深入了解 多值依赖 和 4NF,帮助你在数据库设计中消除更高级别的异常。 什么是

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚