R语言学习—6—多元相关与回归分析

2024-05-03 23:04

本文主要是介绍R语言学习—6—多元相关与回归分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、引子

x=c(171,175,159,155,152,158,154,164,168,166,159,164)   #身高
y=c(57,64,41,38,35,44,41,51,57,49,47,46)               #体重
par(mar=c(5,4,2,1))   #设定图距离画布边缘的距离:下5,左4,上2,右1
plot(x,y)     

在这里插入图片描述
在这里插入图片描述

2、相关系数假设检验

在这里插入图片描述

在这里插入图片描述

3、简单回归分析

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4、案例

在这里插入图片描述

代码

install.packages("openxlsx")
library(openxlsx)d4.3=read.xlsx('adstats.xlsx','d4.3',rowNames=T);d4.3  #读取adstats.xlsx表格d4.3数据
fm=lm(y~x,data=d4.3)  #一元线性回归模型
fm                    #显示回归结果
summary(lm(x2~x1))    #左回归检验和系数检验
plot(y~x,data=d4.3)   #做散点图
abline(fm)            #添加回归线
anova(fm)             #模型方差分析
summary(fm)           #回归系数t检验

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5、多元线性回归分析

(1)d4.4数据

在这里插入图片描述

(2)代码

d4.4=read.xlsx('adstats.xlsx','d4.4',rowNames=T);d4.4  #读取adstats.xlsx表格d4.4数据
plot(d4.4,gap=0)      #两两变量的散点图,参数gap为每个小图形之间的距离
pairs(d4.4,gap=0)     #绘制散点图
fm=lm(y~x1+x2+x3+x4,data=d4.4);fm   #建立多元回归模型coef.sd<-function(fm){  #标准回归系数b=fm$coef;bsi=apply(fm$model,2,sd);sibs=b[-1]*si[-1]/si[1]bs
}
coef.sd(fm)       #标准回归系数

(3)矩阵图

在这里插入图片描述

(4)回归模型

在这里插入图片描述

(5)计算标准回归系数

1、coef.sd <- function(fm):这行代码定义了一个名为 coef.sd 的函数,它接受一个参数 fm,表示一个回归模型。
2、b = fm c o e f ; b :这行代码从回归模型 f m 中提取出系数,并将其赋值给变量 b 。然后将这些系数返回。 3 、 s i = a p p l y ( f m coef; b:这行代码从回归模型 fm 中提取出系数,并将其赋值给变量 b。然后将这些系数返回。 3、si = apply(fm coef;b:这行代码从回归模型fm中提取出系数,并将其赋值给变量b。然后将这些系数返回。3si=apply(fmmodel, 2, sd); si:这行代码计算了每个自变量(模型中的解释变量)的标准差。fm$model 提取了回归模型 fm 的模型数据(包括自变量和因变量),apply 函数在每列上应用 sd 函数来计算标准差,并将结果存储在变量 si 中。
4、bs = b[-1] * si[-1] / si[1]:这行代码计算了标准化的回归系数。首先,b[-1] 提取了除截距以外的所有系数,si[-1] 提取了除因变量以外的所有标准差,然后通过除以第一个标准差 si[1] 来标准化这些系数。结果存储在变量 bs 中。
5、bs:最后,函数返回标准化的回归系数 bs。
在这里插入图片描述

6、多元线性回归模型检验

(1)方差分析

anova(fm) 

在这里插入图片描述

(2)多元线性回归t检验

summary(fm)   

在这里插入图片描述

data.frame(summary(fm)$coef,bstar=c(NA,coef.sd(fm)))   

首先,data.frame(summary(fm) c o e f ) 这部分代码是在创建一个数据框,其中包含了对象 f m (回归模型)的系数摘要。 s u m m a r y ( f m ) coef) 这部分代码是在创建一个数据框,其中包含了对象fm(回归模型)的系数摘要。summary(fm) coef)这部分代码是在创建一个数据框,其中包含了对象fm(回归模型)的系数摘要。summary(fm)coef会返回一个包含模型系数及其统计信息的列表,然后data.frame()函数将这些信息转化为一个数据框的形式。
其次,bstar=c(NA,coef.sd(fm)) 这部分代码是在设置一个名为’bstar’的参数,其值为c(NA,coef.sd(fm))。这里,NA表示该位置是缺失的或未定义的,而coef.sd(fm)是在获取模型系数的标准差
总结来说,这段代码的目的是创建一个包含模型系数摘要和标准差的数据框,并将’bstar’参数设置为模型系数的标准差和缺失值的组合。
在这里插入图片描述

(3)提取F统计量的相关信息

summary(fm)$fstat 

在这里插入图片描述

在这里插入图片描述

7、多元相关分析

cor(d4.4)           #多元数据相关系数矩阵
yX = d4.4
pairs(yX)           #多元数据散点图
msa.cor.test(d4.4)  #多元数据相关系数检验

在这里插入图片描述
在这里插入图片描述

msa.cor.test(d4.4)  #多元数据相关系数检验

在这里插入图片描述
在这里插入图片描述

8、复相关分析

(2)多元线性回归模型的决定系数(决定系数R^2)

多元线性回归模型的决定系数(决定系数R^2)用于衡量模型对观察变量方差的解释程度。决定系数是一个介于0和1之间的数值,其值越接近1,表示模型对数据的解释能力越强。

具体而言,决定系数表示模型中自变量与因变量的总体方差之间的比例。例如,如果因变量的总方差是100,而模型解释了其中75的方差,那么决定系数就是75%。

在多元线性回归模型中,决定系数R2是对模型整体解释能力的总体评估。它可以帮助我们了解模型中自变量对因变量的贡献程度,以及模型预测的准确性。决定系数R2的值越大,说明模型对数据的拟合程度越好。

(1)复相关系数r

多元数据复相关系数是一种统计量,用于衡量多个变量之间的复相关程度。在多元回归分析中,它表示因变量与多个自变量之间的复相关关系。

具体来说,多元数据复相关系数描述了因变量与所有自变量之间的总效应,即所有自变量的总效应对因变量的影响程度。如果多元数据复相关系数较高,说明因变量与多个自变量之间的复相关关系较强,即因变量受多个自变量的共同影响较大

在实际应用中,多元数据复相关系数可以用于评估多个变量之间的相关性,帮助我们理解这些变量之间的相互作用关系,并为我们提供更全面、深入的信息,以便做出更明智的决策。
在这里插入图片描述

9、回归变量的选择方法

(1)变量选择标准

在这里插入图片描述

cp统计量和bic统计量

在这里插入图片描述
在这里插入图片描述

1、x1, x2, x3, x4:这些是模型中的自变量。每个星号 * 表示该自变量被模型选中了。
2、adjR2:这是调整后的 R-squared 值,用于衡量模型对数据的拟合程度。数值越接近1,表示模型对数据的拟合程度越好。
3、Cp:这是 Mallows’ Cp 统计量,用于评估模型的预测准确度和模型的复杂度。通常情况下,Cp 越接近于自变量的数量,表示模型越好。
4、BIC:这是贝叶斯信息准则(Bayesian Information Criterion),也是一种模型选择准则,用于在考虑模型拟合优度和模型复杂度的情况下选择模型。BIC 值越小越好。

  • 根据给出的结果
    1、调整后的 R-squared 值都非常接近于1,这表示模型对数据的拟合程度很好。
    2、Mallows’ Cp 统计量和 BIC 值也都很小,这说明模型的预测准确度较高且模型的复杂度较低。

因此,根据给出的结果,可以得出结论:这个模型的拟合程度很好,且没有明显的过拟合现象。

(2)逐步回归分析

(1)向前引入,向后剔除

这段输出展示了逐步回归法(stepwise regression)中向前引入法和向后剔除法的变量选择结果。

  • 向前引入法(forward selection):从一个空模型开始,逐步引入自变量,直到不再有改进(AIC值最小)为止。在这个例子中,初始模型包含了所有的自变量(x1、x2、x3、x4),然后根据AIC逐步引入,直到不再有改进为止。最终,最佳模型包含了自变量 x1、x2、x4。

  • 向后剔除法(backward elimination):从包含所有自变量的模型开始,逐步剔除自变量,直到不再有改进(AIC值最小)为止。在这个例子中,初始模型也包含了所有的自变量,然后根据AIC逐步剔除,直到不再有改进为止。最终,最佳模型同样包含了自变量 x1、x2、x4。

这些结果反映了模型的拟合程度和模型的复杂度之间的平衡。最终的模型选择了 x1、x2、x4 这三个自变量,因为它们能够在保持模型简洁的同时最大程度地解释因变量的变异。
在这里插入图片描述

(2)逐步筛选法

这段输出展示了逐步筛选法(stepwise selection)的变量选择结果,结合了向前引入法和向后剔除法。

  • 从一个包含所有自变量的模型开始。
  • 首先,根据 AIC(Akaike Information Criterion)的准则,逐步剔除自变量,直到不再有改进(AIC值最小)为止。在这个过程中,自变量 x3 被剔除。
  • 接着,在剔除了 x3 后,再根据 AIC 的准则逐步剔除自变量,直到不再有改进为止。在这个过程中,自变量 x1 被剔除。
  • 最终的模型保留了自变量 x2 和 x4。

这些结果提供了一个平衡模型拟合度和模型复杂度的方案。最终的模型选择了 x2 和 x4 这两个自变量,因为它们能够在保持模型简洁的同时最大程度地解释因变量的变异
在这里插入图片描述
当模型含有不同变量时,对应的AIC值如下:

  1. 初始模型:y ~ x1 + x2 + x3 + x4,AIC=68.15
  2. 剔除了 x3:y ~ x1 + x2 + x4,AIC=66.16
  3. 剔除了 x1:y ~ x2 + x4,AIC=64.39

这些AIC值反映了模型的拟合程度和模型的复杂度之间的权衡。较小的AIC值表示模型对数据的拟合更好,同时考虑了模型的复杂度。

(3)模型拟合结果

在这里插入图片描述
这段代码描述了一个多元线性回归模型的拟合结果,包括了模型的系数估计、p值、F检验等重要信息。

10、案例——财政收入的相关与回归分析

(1)case4数据

在这里插入图片描述

(2)代码

Case4=read.xlsx('adcase.xlsx','Case4');
summary(Case4)
cor(Case4)   #相关分析
plot(Case4,gap=0)  #矩阵散点图
msa.cor.test(Case4)
fm=lm(y~.,data=Case4);summary(fm)
sfm=step(fm);summary(sfm)
plot(Case4$y);lines(sfm$fitted)

(3)结果

(1)汇总统计

在这里插入图片描述

(2)相关分析

在这里插入图片描述

(3)矩阵散点图

在这里插入图片描述

(4)相关性检验

在这里插入图片描述
这段代码使用了 msa.cor.test 函数对 Case4 数据框中的变量进行了相关性检验,输出了相关性检验的结果。

  • 目的:检验各个变量之间的相关性。

  • 包含的信息:

    • 相关系数(上三角矩阵):对角线上是每个变量自身的相关系数,其他位置是各个变量之间的相关系数。
    • t值和p值(下三角矩阵):用于检验相关系数是否显著不等于0。
      • t值表示检验统计量,用于判断相关系数是否显著不等于0。
      • p值表示t检验的双侧p值,用于判断相关系数是否显著。
  • 结论:

    • t值较大或p值较小的相关系数意味着相关性较强且可能显著不等于0。
    • t值和p值都为0的对角线位置表示每个变量自身与自身的相关系数,这是必然的。

通过这些信息,我们可以得出各个变量之间的相关性程度,并进一步分析各个变量之间的关联关系。

(5)线性回归分析

在这里插入图片描述
这段代码进行了线性回归分析,其中:

  • 目的:通过最小二乘法拟合了一个线性模型,该模型用于预测因变量 y,该模型包含了自变量 x1 到 x9。

  • 包含的信息:

    • 模型系数(Estimate):对应每个自变量的系数估计值,表示自变量对因变量的影响程度。
    • 标准误差(Std. Error):系数的标准误差,用于衡量估计系数的准确性。
    • t值(t value):系数估计值除以标准误差的比值,用于检验系数是否显著不等于0。
    • p值(Pr(>|t|)):t检验的双侧p值,用于判断系数是否显著不等于0。
    • 残差标准误差(Residual standard error):残差的标准偏差,用于衡量模型对数据的拟合程度。
    • 拟合优度(Multiple R-squared):表示模型对因变量的解释程度,值越接近1表示模型拟合程度越好。
    • 调整后的拟合优度(Adjusted R-squared):考虑了模型中自变量数量的调整后的拟合优度,用于避免过度拟合的情况。
    • F统计量(F-statistic):用于检验模型整体拟合优度的统计量。
    • p值(p-value):F统计量的双侧p值,用于判断模型整体拟合优度是否显著。
  • 结论:

    • 模型整体拟合优度很高,Multiple R-squared为0.999,Adjusted R-squared为0.997,这表明模型能够很好地解释因变量的变异。
    • 模型中有一些自变量的系数在统计上显著不等于0,如x4和x6,这些自变量可能对因变量有重要影响。
    • 其他自变量的系数则不显著,如x1、x2、x5、x7、x8、x9,这些自变量可能对因变量的影响不显著。

(6)模型优化——逐步回归法

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
这段代码使用了逐步回归方法来选择模型,最终得到了一个相对较优的模型。逐步回归的目的是根据某个准则(如AIC)逐步添加或删除自变量,以得到一个在预测性能和模型复杂度之间达到平衡的模型。

  • 模型选择过程:

    • 初始模型包含了所有自变量 x1 到 x9。
    • 逐步根据AIC值选择自变量:首先删除x9,然后删除x5和x7,最终得到了一个包含了x1、x2、x3、x4、x6和x8的最优模型。
    • 每一步选择都会显示相应的自变量被删除后的模型的AIC值,以及相应的自变量的Sum of Sq、RSS和AIC值。
  • 结论:

    • 最终的模型包含了自变量 x1、x2、x3、x4、x6 和 x8。
    • 这些自变量的系数估计值、标准误差、t值和p值显示在最终的模型汇总中。
    • 可以用这个最终模型来预测因变量 y,且该模型在考虑了预测性能和模型复杂度后得到了一定的优化。

(7) 实际值和拟合值可视化

在这里插入图片描述
这段代码的目的是在同一张图上绘制实际观测值(Case4数据框中的y变量)和逐步回归模型(sfm)的拟合值。

  • plot(Case4$y):这个语句绘制了因变量 y 的实际观测值。在图中,每个点表示一个观测值。

  • lines(sfm$fitted):这个语句绘制了逐步回归模型 sfm 对应的拟合值。在图中,这些拟合值将作为一条曲线或折线,表示模型对每个观测值的预测值。

结论:

  • 通过将实际观测值和模型拟合值绘制在同一张图上,可以直观地比较模型对数据的拟合程度。如果拟合值与实际观测值非常接近,则说明模型能够较好地解释数据的变异性。
  • 如果拟合值与实际观测值有较大偏差,则可能需要重新评估模型的拟合情况或考虑改进模型。

这篇关于R语言学习—6—多元相关与回归分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957846

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验