蛋白质PDB文件解析+建图(biopython+DGL)

2024-05-03 21:52

本文主要是介绍蛋白质PDB文件解析+建图(biopython+DGL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PDB文件解析

PDB文件设计得非常好,能够比较完整地记录实验测定数据

读懂蛋白质PDB文件-腾讯云开发者社区-腾讯云 (tencent.com)

科学网—PDB文件格式说明 - 李继存的博文 (sciencenet.cn)

从蛋白质结构来看,首先它会有多种不同的测定模型,然后每个模型中包含多条链,每条连上包含若干个残基,每个残基包含若干个原子

在biopython.PDB包中可以找到这些概念对应的模块:model、chain、residue、atom

Bio.PDB软件包 — Biopython 1.79 文档 (osgeo.cn)

首先用PDBParser读取文件,获得structure

struct = parser.get_structure(0,pdbfilepath)
model = struct.get_models().__next__()

struct内部的一层结构是model,我们只取第一个model

然后就可以用循环遍历chains、residues、atoms

for chain in model.get_chains():for residue in chain.get_residues():for atom in residue.get_atoms():

虽然也可以直接从structure中获取atom序列、residue序列、chain序列

但是这样就失去了一些从属关系

另外还可以通过查询的方式获得残基中的某个原子

例如使用residue['CA']就可以获取残基residue中名字为‘CA’的原子(氨基酸α碳原子)

所以我们只需要枚举残基,给每个残基的Cα原子进行编号就可以了

一般的PDB文件中都包含原子坐标数据,可以用它来作为这个氨基酸的一个特征

另外,为了获得序列,我们还需要把氨基酸的三字母缩写转化为一字母缩写,下面是一个转换矩阵。

three2one= {'VAL':'V', 'ILE':'I', 'LEU':'L', 'GLU':'E', 'GLN':'Q','ASP':'D', 'ASN':'N', 'HIS':'H', 'TRP':'W', 'PHE':'F', 'TYR':'Y', 'ARG':'R', 'LYS':'K', 'SER':'S', 'THR':'T', 'MET':'M', 'ALA':'A', 'GLY':'G', 'PRO':'P', 'CYS':'C'
}

使用DGL对蛋白质建图

DGL库接口解析:dgl — DGL 2.1.0 documentation

建图的方法就很多了,得看个人的设计,有只根据Cα原子之间的距离进行建图的,有使用所有原子来建图的,也有用肽链原子+残基Cβ原子+二硫键建图的,只能说是五花八门,不过这些都只是多写几个if 的问题。

特征构造的方式就更多了

简单的,边不加特征,氨基酸作为点用独热向量作为特征

复杂的就多了去了,有加化学键长度的,有对化学键加入类别的,有加入残基直径的,还有加入原子数、分子量、氨基酸电性的,氨基酸特征向量还可以用一些序列比对的特征值,例如blosum,pam,cIndex of /blast/matrices (nih.gov) 总之想法很多,但真正有用的就那么几个。

DGL添加点:(第一个参数是点的个数,后面是一个dict,里面写这个点的特征向量tensor,但必须行数相同)

graph.add_nodes(1, {'pos': pos_feature, 'res': residue_feature})

DGL添加边:(必须用两个tensor来表示两个端点的编号,后面的dict同样是边的特征向量)

值得注意的是,DGL只会添加单向边,所以无向边需要加两次

(ps:在网上看到许多写法都是graph=dgl.add_edges(graph,……),但graph.adde_edges()也是可以用的)

graph.add_edges(torch.tensor([atom_num-1]), torch.tensor([atom_num]), {'feat': Peptide_bond_feature})

这里我使用的是,只根据肽键和Cα原子进行建图,以Cα原子代替氨基酸作为点,边为两个氨基酸之间是否存在肽键,点特征为氨基酸的blosum80特征和坐标特征,边特征为独热向量,方便以后加入其他类型的边。

import Bio.PDB.PDBParser
import os
import numpy
import torch
import dglparser = Bio.PDB.PDBParser()
# 连接Cα的肽键的边特征向量
Peptide_bond_feature = torch.tensor([1.0,0.0])
# 连接Cα的二硫键的边特征向量
S_S_bond_feature = torch.tensor([0.0,1.0])three2one= {'VAL':'V', 'ILE':'I', 'LEU':'L', 'GLU':'E', 'GLN':'Q','ASP':'D', 'ASN':'N', 'HIS':'H', 'TRP':'W', 'PHE':'F', 'TYR':'Y', 'ARG':'R', 'LYS':'K', 'SER':'S', 'THR':'T', 'MET':'M', 'ALA':'A', 'GLY':'G', 'PRO':'P', 'CYS':'C'
}
# 氨基酸的特征
AA_feature_blosum80 = {
'A' : torch.tensor([ 7, -3, -3, -3, -1, -2, -2,  0, -3, -3, -3, -1, -2, -4, -1,  2,  0, -5, -4, -1, -3, -2, -1]),
'R' : torch.tensor([-3,  9, -1, -3, -6,  1, -1, -4,  0, -5, -4,  3, -3, -5, -3, -2, -2, -5, -4, -4, -2,  0, -2]),
'N' : torch.tensor([-3, -1,  9,  2, -5,  0, -1, -1,  1, -6, -6,  0, -4, -6, -4,  1,  0, -7, -4, -5,  5, -1, -2]),
'D' : torch.tensor([-3, -3,  2, 10, -7, -1,  2, -3, -2, -7, -7, -2, -6, -6, -3, -1, -2, -8, -6, -6,  6,  1, -3]),
'C' : torch.tensor([-1, -6, -5, -7, 13, -5, -7, -6, -7, -2, -3, -6, -3, -4, -6, -2, -2, -5, -5, -2, -6, -7, -4]),
'Q' : torch.tensor([-2,  1,  0, -1, -5,  9,  3, -4,  1, -5, -4,  2, -1, -5, -3, -1, -1, -4, -3, -4, -1,  5, -2]),
'E' : torch.tensor([-2, -1, -1,  2, -7,  3,  8, -4,  0, -6, -6,  1, -4, -6, -2, -1, -2, -6, -5, -4,  1,  6, -2]),
'G' : torch.tensor([ 0, -4, -1, -3, -6, -4, -4,  9, -4, -7, -7, -3, -5, -6, -5, -1, -3, -6, -6, -6, -2, -4, -3]),
'H' : torch.tensor([-3,  0,  1, -2, -7,  1,  0, -4, 12, -6, -5, -1, -4, -2, -4, -2, -3, -4,  3, -5, -1,  0, -2]),
'I' : torch.tensor([-3, -5, -6, -7, -2, -5, -6, -7, -6,  7,  2, -5,  2, -1, -5, -4, -2, -5, -3,  4, -6, -6, -2]),
'L' : torch.tensor([-3, -4, -6, -7, -3, -4, -6, -7, -5,  2,  6, -4,  3,  0, -5, -4, -3, -4, -2,  1, -7, -5, -2]),
'K' : torch.tensor([-1,  3,  0, -2, -6,  2,  1, -3, -1, -5, -4,  8, -3, -5, -2, -1, -1, -6, -4, -4, -1,  1, -2]),
'M' : torch.tensor([-2, -3, -4, -6, -3, -1, -4, -5, -4,  2,  3, -3,  9,  0, -4, -3, -1, -3, -3,  1, -5, -3, -2]),
'F' : torch.tensor([-4, -5, -6, -6, -4, -5, -6, -6, -2, -1,  0, -5,  0, 10, -6, -4, -4,  0,  4, -2, -6, -6, -3]),
'P' : torch.tensor([-1, -3, -4, -3, -6, -3, -2, -5, -4, -5, -5, -2, -4, -6, 12, -2, -3, -7, -6, -4, -4, -2, -3]),
'S' : torch.tensor([ 2, -2,  1, -1, -2, -1, -1, -1, -2, -4, -4, -1, -3, -4, -2,  7,  2, -6, -3, -3,  0, -1, -1]),
'T' : torch.tensor([ 0, -2,  0, -2, -2, -1, -2, -3, -3, -2, -3, -1, -1, -4, -3,  2,  8, -5, -3,  0, -1, -2, -1]),
'W' : torch.tensor([-5, -5, -7, -8, -5, -4, -6, -6, -4, -5, -4, -6, -3,  0, -7, -6, -5, 16,  3, -5, -8, -5, -5]),
'Y' : torch.tensor([-4, -4, -4, -6, -5, -3, -5, -6,  3, -3, -2, -4, -3,  4, -6, -3, -3,  3, 11, -3, -5, -4, -3]),
'V' : torch.tensor([-1, -4, -5, -6, -2, -4, -4, -6, -5,  4,  1, -4,  1, -2, -4, -3,  0, -5, -3,  7, -6, -4, -2]),
'B' : torch.tensor([-3, -2,  5,  6, -6, -1,  1, -2, -1, -6, -7, -1, -5, -6, -4,  0, -1, -8, -5, -6,  6,  0, -3]),
'Z' : torch.tensor([-2,  0, -1,  1, -7,  5,  6, -4,  0, -6, -5,  1, -3, -6, -2, -1, -2, -5, -4, -4,  0,  6, -1]),
'X' : torch.tensor([-1, -2, -2, -3, -4, -2, -2, -3, -2, -2, -2, -2, -2, -3, -3, -1, -1, -5, -3, -2, -3, -1, -2]),
}def get_seq_graph_info(pdbfilepath):struct = parser.get_structure(0,pdbfilepath)model = struct.get_models().__next__()seq = []graph = dgl.DGLGraph()residue_num = 0for chain in model.get_chains():residues = chain.get_residues()# print(chain)chain_start_flag = 1for residue in residues:res_name = three2one[residue.get_resname()]seq.append(res_name)pos_feature = torch.from_numpy(residue['CA'].get_coord()).unsqueeze(0)residue_feature = AA_feature_blosum80[res_name].unsqueeze(0)graph.add_nodes(1, {'pos': pos_feature, 'res': residue_feature})if chain_start_flag == 0 :graph.add_edges(torch.tensor([residue_num-1]), torch.tensor([residue_num]), {'feat': Peptide_bond_feature})graph.add_edges(torch.tensor([residue_num]), torch.tensor([residue_num-1]), {'feat': Peptide_bond_feature})residue_num += 1chain_start_flag = 0return seq,graphpdb_data_dir = 'D:\PVT\data'
file_list = [os.path.join(pdb_data_dir, file) for file in os.listdir(pdb_data_dir)]
for file in file_list:if file.endswith('.pdb'):print("processing "+file)seq,graph = get_seq_graph_info(file)print(seq)print(graph)print("finished!")

运行结果:

点数61,边数120

可以看出这个蛋白质只是一条肽链

这样我们就从PDB文件中得到了 氨基酸序列和蛋白质的图

接下来就可以愉快地使用GNN之类的东西提取特征啦

这篇关于蛋白质PDB文件解析+建图(biopython+DGL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957729

相关文章

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数