蛋白质PDB文件解析+建图(biopython+DGL)

2024-05-03 21:52

本文主要是介绍蛋白质PDB文件解析+建图(biopython+DGL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PDB文件解析

PDB文件设计得非常好,能够比较完整地记录实验测定数据

读懂蛋白质PDB文件-腾讯云开发者社区-腾讯云 (tencent.com)

科学网—PDB文件格式说明 - 李继存的博文 (sciencenet.cn)

从蛋白质结构来看,首先它会有多种不同的测定模型,然后每个模型中包含多条链,每条连上包含若干个残基,每个残基包含若干个原子

在biopython.PDB包中可以找到这些概念对应的模块:model、chain、residue、atom

Bio.PDB软件包 — Biopython 1.79 文档 (osgeo.cn)

首先用PDBParser读取文件,获得structure

struct = parser.get_structure(0,pdbfilepath)
model = struct.get_models().__next__()

struct内部的一层结构是model,我们只取第一个model

然后就可以用循环遍历chains、residues、atoms

for chain in model.get_chains():for residue in chain.get_residues():for atom in residue.get_atoms():

虽然也可以直接从structure中获取atom序列、residue序列、chain序列

但是这样就失去了一些从属关系

另外还可以通过查询的方式获得残基中的某个原子

例如使用residue['CA']就可以获取残基residue中名字为‘CA’的原子(氨基酸α碳原子)

所以我们只需要枚举残基,给每个残基的Cα原子进行编号就可以了

一般的PDB文件中都包含原子坐标数据,可以用它来作为这个氨基酸的一个特征

另外,为了获得序列,我们还需要把氨基酸的三字母缩写转化为一字母缩写,下面是一个转换矩阵。

three2one= {'VAL':'V', 'ILE':'I', 'LEU':'L', 'GLU':'E', 'GLN':'Q','ASP':'D', 'ASN':'N', 'HIS':'H', 'TRP':'W', 'PHE':'F', 'TYR':'Y', 'ARG':'R', 'LYS':'K', 'SER':'S', 'THR':'T', 'MET':'M', 'ALA':'A', 'GLY':'G', 'PRO':'P', 'CYS':'C'
}

使用DGL对蛋白质建图

DGL库接口解析:dgl — DGL 2.1.0 documentation

建图的方法就很多了,得看个人的设计,有只根据Cα原子之间的距离进行建图的,有使用所有原子来建图的,也有用肽链原子+残基Cβ原子+二硫键建图的,只能说是五花八门,不过这些都只是多写几个if 的问题。

特征构造的方式就更多了

简单的,边不加特征,氨基酸作为点用独热向量作为特征

复杂的就多了去了,有加化学键长度的,有对化学键加入类别的,有加入残基直径的,还有加入原子数、分子量、氨基酸电性的,氨基酸特征向量还可以用一些序列比对的特征值,例如blosum,pam,cIndex of /blast/matrices (nih.gov) 总之想法很多,但真正有用的就那么几个。

DGL添加点:(第一个参数是点的个数,后面是一个dict,里面写这个点的特征向量tensor,但必须行数相同)

graph.add_nodes(1, {'pos': pos_feature, 'res': residue_feature})

DGL添加边:(必须用两个tensor来表示两个端点的编号,后面的dict同样是边的特征向量)

值得注意的是,DGL只会添加单向边,所以无向边需要加两次

(ps:在网上看到许多写法都是graph=dgl.add_edges(graph,……),但graph.adde_edges()也是可以用的)

graph.add_edges(torch.tensor([atom_num-1]), torch.tensor([atom_num]), {'feat': Peptide_bond_feature})

这里我使用的是,只根据肽键和Cα原子进行建图,以Cα原子代替氨基酸作为点,边为两个氨基酸之间是否存在肽键,点特征为氨基酸的blosum80特征和坐标特征,边特征为独热向量,方便以后加入其他类型的边。

import Bio.PDB.PDBParser
import os
import numpy
import torch
import dglparser = Bio.PDB.PDBParser()
# 连接Cα的肽键的边特征向量
Peptide_bond_feature = torch.tensor([1.0,0.0])
# 连接Cα的二硫键的边特征向量
S_S_bond_feature = torch.tensor([0.0,1.0])three2one= {'VAL':'V', 'ILE':'I', 'LEU':'L', 'GLU':'E', 'GLN':'Q','ASP':'D', 'ASN':'N', 'HIS':'H', 'TRP':'W', 'PHE':'F', 'TYR':'Y', 'ARG':'R', 'LYS':'K', 'SER':'S', 'THR':'T', 'MET':'M', 'ALA':'A', 'GLY':'G', 'PRO':'P', 'CYS':'C'
}
# 氨基酸的特征
AA_feature_blosum80 = {
'A' : torch.tensor([ 7, -3, -3, -3, -1, -2, -2,  0, -3, -3, -3, -1, -2, -4, -1,  2,  0, -5, -4, -1, -3, -2, -1]),
'R' : torch.tensor([-3,  9, -1, -3, -6,  1, -1, -4,  0, -5, -4,  3, -3, -5, -3, -2, -2, -5, -4, -4, -2,  0, -2]),
'N' : torch.tensor([-3, -1,  9,  2, -5,  0, -1, -1,  1, -6, -6,  0, -4, -6, -4,  1,  0, -7, -4, -5,  5, -1, -2]),
'D' : torch.tensor([-3, -3,  2, 10, -7, -1,  2, -3, -2, -7, -7, -2, -6, -6, -3, -1, -2, -8, -6, -6,  6,  1, -3]),
'C' : torch.tensor([-1, -6, -5, -7, 13, -5, -7, -6, -7, -2, -3, -6, -3, -4, -6, -2, -2, -5, -5, -2, -6, -7, -4]),
'Q' : torch.tensor([-2,  1,  0, -1, -5,  9,  3, -4,  1, -5, -4,  2, -1, -5, -3, -1, -1, -4, -3, -4, -1,  5, -2]),
'E' : torch.tensor([-2, -1, -1,  2, -7,  3,  8, -4,  0, -6, -6,  1, -4, -6, -2, -1, -2, -6, -5, -4,  1,  6, -2]),
'G' : torch.tensor([ 0, -4, -1, -3, -6, -4, -4,  9, -4, -7, -7, -3, -5, -6, -5, -1, -3, -6, -6, -6, -2, -4, -3]),
'H' : torch.tensor([-3,  0,  1, -2, -7,  1,  0, -4, 12, -6, -5, -1, -4, -2, -4, -2, -3, -4,  3, -5, -1,  0, -2]),
'I' : torch.tensor([-3, -5, -6, -7, -2, -5, -6, -7, -6,  7,  2, -5,  2, -1, -5, -4, -2, -5, -3,  4, -6, -6, -2]),
'L' : torch.tensor([-3, -4, -6, -7, -3, -4, -6, -7, -5,  2,  6, -4,  3,  0, -5, -4, -3, -4, -2,  1, -7, -5, -2]),
'K' : torch.tensor([-1,  3,  0, -2, -6,  2,  1, -3, -1, -5, -4,  8, -3, -5, -2, -1, -1, -6, -4, -4, -1,  1, -2]),
'M' : torch.tensor([-2, -3, -4, -6, -3, -1, -4, -5, -4,  2,  3, -3,  9,  0, -4, -3, -1, -3, -3,  1, -5, -3, -2]),
'F' : torch.tensor([-4, -5, -6, -6, -4, -5, -6, -6, -2, -1,  0, -5,  0, 10, -6, -4, -4,  0,  4, -2, -6, -6, -3]),
'P' : torch.tensor([-1, -3, -4, -3, -6, -3, -2, -5, -4, -5, -5, -2, -4, -6, 12, -2, -3, -7, -6, -4, -4, -2, -3]),
'S' : torch.tensor([ 2, -2,  1, -1, -2, -1, -1, -1, -2, -4, -4, -1, -3, -4, -2,  7,  2, -6, -3, -3,  0, -1, -1]),
'T' : torch.tensor([ 0, -2,  0, -2, -2, -1, -2, -3, -3, -2, -3, -1, -1, -4, -3,  2,  8, -5, -3,  0, -1, -2, -1]),
'W' : torch.tensor([-5, -5, -7, -8, -5, -4, -6, -6, -4, -5, -4, -6, -3,  0, -7, -6, -5, 16,  3, -5, -8, -5, -5]),
'Y' : torch.tensor([-4, -4, -4, -6, -5, -3, -5, -6,  3, -3, -2, -4, -3,  4, -6, -3, -3,  3, 11, -3, -5, -4, -3]),
'V' : torch.tensor([-1, -4, -5, -6, -2, -4, -4, -6, -5,  4,  1, -4,  1, -2, -4, -3,  0, -5, -3,  7, -6, -4, -2]),
'B' : torch.tensor([-3, -2,  5,  6, -6, -1,  1, -2, -1, -6, -7, -1, -5, -6, -4,  0, -1, -8, -5, -6,  6,  0, -3]),
'Z' : torch.tensor([-2,  0, -1,  1, -7,  5,  6, -4,  0, -6, -5,  1, -3, -6, -2, -1, -2, -5, -4, -4,  0,  6, -1]),
'X' : torch.tensor([-1, -2, -2, -3, -4, -2, -2, -3, -2, -2, -2, -2, -2, -3, -3, -1, -1, -5, -3, -2, -3, -1, -2]),
}def get_seq_graph_info(pdbfilepath):struct = parser.get_structure(0,pdbfilepath)model = struct.get_models().__next__()seq = []graph = dgl.DGLGraph()residue_num = 0for chain in model.get_chains():residues = chain.get_residues()# print(chain)chain_start_flag = 1for residue in residues:res_name = three2one[residue.get_resname()]seq.append(res_name)pos_feature = torch.from_numpy(residue['CA'].get_coord()).unsqueeze(0)residue_feature = AA_feature_blosum80[res_name].unsqueeze(0)graph.add_nodes(1, {'pos': pos_feature, 'res': residue_feature})if chain_start_flag == 0 :graph.add_edges(torch.tensor([residue_num-1]), torch.tensor([residue_num]), {'feat': Peptide_bond_feature})graph.add_edges(torch.tensor([residue_num]), torch.tensor([residue_num-1]), {'feat': Peptide_bond_feature})residue_num += 1chain_start_flag = 0return seq,graphpdb_data_dir = 'D:\PVT\data'
file_list = [os.path.join(pdb_data_dir, file) for file in os.listdir(pdb_data_dir)]
for file in file_list:if file.endswith('.pdb'):print("processing "+file)seq,graph = get_seq_graph_info(file)print(seq)print(graph)print("finished!")

运行结果:

点数61,边数120

可以看出这个蛋白质只是一条肽链

这样我们就从PDB文件中得到了 氨基酸序列和蛋白质的图

接下来就可以愉快地使用GNN之类的东西提取特征啦

这篇关于蛋白质PDB文件解析+建图(biopython+DGL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957729

相关文章

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

MySQL 缓存机制与架构解析(最新推荐)

《MySQL缓存机制与架构解析(最新推荐)》本文详细介绍了MySQL的缓存机制和整体架构,包括一级缓存(InnoDBBufferPool)和二级缓存(QueryCache),文章还探讨了SQL... 目录一、mysql缓存机制概述二、MySQL整体架构三、SQL查询执行全流程四、MySQL 8.0为何移除查

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

使用Java实现一个解析CURL脚本小工具

《使用Java实现一个解析CURL脚本小工具》文章介绍了如何使用Java实现一个解析CURL脚本的工具,该工具可以将CURL脚本中的Header解析为KVMap结构,获取URL路径、请求类型,解析UR... 目录使用示例实现原理具体实现CurlParserUtilCurlEntityICurlHandler

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT

数据库使用之union、union all、各种join的用法区别解析

《数据库使用之union、unionall、各种join的用法区别解析》:本文主要介绍SQL中的Union和UnionAll的区别,包括去重与否以及使用时的注意事项,还详细解释了Join关键字,... 目录一、Union 和Union All1、区别:2、注意点:3、具体举例二、Join关键字的区别&php

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

java中的HashSet与 == 和 equals的区别示例解析

《java中的HashSet与==和equals的区别示例解析》HashSet是Java中基于哈希表实现的集合类,特点包括:元素唯一、无序和可包含null,本文给大家介绍java中的HashSe... 目录什么是HashSetHashSet 的主要特点是HashSet 的常用方法hasSet存储为啥是无序的

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用