蛋白质PDB文件解析+建图(biopython+DGL)

2024-05-03 21:52

本文主要是介绍蛋白质PDB文件解析+建图(biopython+DGL),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PDB文件解析

PDB文件设计得非常好,能够比较完整地记录实验测定数据

读懂蛋白质PDB文件-腾讯云开发者社区-腾讯云 (tencent.com)

科学网—PDB文件格式说明 - 李继存的博文 (sciencenet.cn)

从蛋白质结构来看,首先它会有多种不同的测定模型,然后每个模型中包含多条链,每条连上包含若干个残基,每个残基包含若干个原子

在biopython.PDB包中可以找到这些概念对应的模块:model、chain、residue、atom

Bio.PDB软件包 — Biopython 1.79 文档 (osgeo.cn)

首先用PDBParser读取文件,获得structure

struct = parser.get_structure(0,pdbfilepath)
model = struct.get_models().__next__()

struct内部的一层结构是model,我们只取第一个model

然后就可以用循环遍历chains、residues、atoms

for chain in model.get_chains():for residue in chain.get_residues():for atom in residue.get_atoms():

虽然也可以直接从structure中获取atom序列、residue序列、chain序列

但是这样就失去了一些从属关系

另外还可以通过查询的方式获得残基中的某个原子

例如使用residue['CA']就可以获取残基residue中名字为‘CA’的原子(氨基酸α碳原子)

所以我们只需要枚举残基,给每个残基的Cα原子进行编号就可以了

一般的PDB文件中都包含原子坐标数据,可以用它来作为这个氨基酸的一个特征

另外,为了获得序列,我们还需要把氨基酸的三字母缩写转化为一字母缩写,下面是一个转换矩阵。

three2one= {'VAL':'V', 'ILE':'I', 'LEU':'L', 'GLU':'E', 'GLN':'Q','ASP':'D', 'ASN':'N', 'HIS':'H', 'TRP':'W', 'PHE':'F', 'TYR':'Y', 'ARG':'R', 'LYS':'K', 'SER':'S', 'THR':'T', 'MET':'M', 'ALA':'A', 'GLY':'G', 'PRO':'P', 'CYS':'C'
}

使用DGL对蛋白质建图

DGL库接口解析:dgl — DGL 2.1.0 documentation

建图的方法就很多了,得看个人的设计,有只根据Cα原子之间的距离进行建图的,有使用所有原子来建图的,也有用肽链原子+残基Cβ原子+二硫键建图的,只能说是五花八门,不过这些都只是多写几个if 的问题。

特征构造的方式就更多了

简单的,边不加特征,氨基酸作为点用独热向量作为特征

复杂的就多了去了,有加化学键长度的,有对化学键加入类别的,有加入残基直径的,还有加入原子数、分子量、氨基酸电性的,氨基酸特征向量还可以用一些序列比对的特征值,例如blosum,pam,cIndex of /blast/matrices (nih.gov) 总之想法很多,但真正有用的就那么几个。

DGL添加点:(第一个参数是点的个数,后面是一个dict,里面写这个点的特征向量tensor,但必须行数相同)

graph.add_nodes(1, {'pos': pos_feature, 'res': residue_feature})

DGL添加边:(必须用两个tensor来表示两个端点的编号,后面的dict同样是边的特征向量)

值得注意的是,DGL只会添加单向边,所以无向边需要加两次

(ps:在网上看到许多写法都是graph=dgl.add_edges(graph,……),但graph.adde_edges()也是可以用的)

graph.add_edges(torch.tensor([atom_num-1]), torch.tensor([atom_num]), {'feat': Peptide_bond_feature})

这里我使用的是,只根据肽键和Cα原子进行建图,以Cα原子代替氨基酸作为点,边为两个氨基酸之间是否存在肽键,点特征为氨基酸的blosum80特征和坐标特征,边特征为独热向量,方便以后加入其他类型的边。

import Bio.PDB.PDBParser
import os
import numpy
import torch
import dglparser = Bio.PDB.PDBParser()
# 连接Cα的肽键的边特征向量
Peptide_bond_feature = torch.tensor([1.0,0.0])
# 连接Cα的二硫键的边特征向量
S_S_bond_feature = torch.tensor([0.0,1.0])three2one= {'VAL':'V', 'ILE':'I', 'LEU':'L', 'GLU':'E', 'GLN':'Q','ASP':'D', 'ASN':'N', 'HIS':'H', 'TRP':'W', 'PHE':'F', 'TYR':'Y', 'ARG':'R', 'LYS':'K', 'SER':'S', 'THR':'T', 'MET':'M', 'ALA':'A', 'GLY':'G', 'PRO':'P', 'CYS':'C'
}
# 氨基酸的特征
AA_feature_blosum80 = {
'A' : torch.tensor([ 7, -3, -3, -3, -1, -2, -2,  0, -3, -3, -3, -1, -2, -4, -1,  2,  0, -5, -4, -1, -3, -2, -1]),
'R' : torch.tensor([-3,  9, -1, -3, -6,  1, -1, -4,  0, -5, -4,  3, -3, -5, -3, -2, -2, -5, -4, -4, -2,  0, -2]),
'N' : torch.tensor([-3, -1,  9,  2, -5,  0, -1, -1,  1, -6, -6,  0, -4, -6, -4,  1,  0, -7, -4, -5,  5, -1, -2]),
'D' : torch.tensor([-3, -3,  2, 10, -7, -1,  2, -3, -2, -7, -7, -2, -6, -6, -3, -1, -2, -8, -6, -6,  6,  1, -3]),
'C' : torch.tensor([-1, -6, -5, -7, 13, -5, -7, -6, -7, -2, -3, -6, -3, -4, -6, -2, -2, -5, -5, -2, -6, -7, -4]),
'Q' : torch.tensor([-2,  1,  0, -1, -5,  9,  3, -4,  1, -5, -4,  2, -1, -5, -3, -1, -1, -4, -3, -4, -1,  5, -2]),
'E' : torch.tensor([-2, -1, -1,  2, -7,  3,  8, -4,  0, -6, -6,  1, -4, -6, -2, -1, -2, -6, -5, -4,  1,  6, -2]),
'G' : torch.tensor([ 0, -4, -1, -3, -6, -4, -4,  9, -4, -7, -7, -3, -5, -6, -5, -1, -3, -6, -6, -6, -2, -4, -3]),
'H' : torch.tensor([-3,  0,  1, -2, -7,  1,  0, -4, 12, -6, -5, -1, -4, -2, -4, -2, -3, -4,  3, -5, -1,  0, -2]),
'I' : torch.tensor([-3, -5, -6, -7, -2, -5, -6, -7, -6,  7,  2, -5,  2, -1, -5, -4, -2, -5, -3,  4, -6, -6, -2]),
'L' : torch.tensor([-3, -4, -6, -7, -3, -4, -6, -7, -5,  2,  6, -4,  3,  0, -5, -4, -3, -4, -2,  1, -7, -5, -2]),
'K' : torch.tensor([-1,  3,  0, -2, -6,  2,  1, -3, -1, -5, -4,  8, -3, -5, -2, -1, -1, -6, -4, -4, -1,  1, -2]),
'M' : torch.tensor([-2, -3, -4, -6, -3, -1, -4, -5, -4,  2,  3, -3,  9,  0, -4, -3, -1, -3, -3,  1, -5, -3, -2]),
'F' : torch.tensor([-4, -5, -6, -6, -4, -5, -6, -6, -2, -1,  0, -5,  0, 10, -6, -4, -4,  0,  4, -2, -6, -6, -3]),
'P' : torch.tensor([-1, -3, -4, -3, -6, -3, -2, -5, -4, -5, -5, -2, -4, -6, 12, -2, -3, -7, -6, -4, -4, -2, -3]),
'S' : torch.tensor([ 2, -2,  1, -1, -2, -1, -1, -1, -2, -4, -4, -1, -3, -4, -2,  7,  2, -6, -3, -3,  0, -1, -1]),
'T' : torch.tensor([ 0, -2,  0, -2, -2, -1, -2, -3, -3, -2, -3, -1, -1, -4, -3,  2,  8, -5, -3,  0, -1, -2, -1]),
'W' : torch.tensor([-5, -5, -7, -8, -5, -4, -6, -6, -4, -5, -4, -6, -3,  0, -7, -6, -5, 16,  3, -5, -8, -5, -5]),
'Y' : torch.tensor([-4, -4, -4, -6, -5, -3, -5, -6,  3, -3, -2, -4, -3,  4, -6, -3, -3,  3, 11, -3, -5, -4, -3]),
'V' : torch.tensor([-1, -4, -5, -6, -2, -4, -4, -6, -5,  4,  1, -4,  1, -2, -4, -3,  0, -5, -3,  7, -6, -4, -2]),
'B' : torch.tensor([-3, -2,  5,  6, -6, -1,  1, -2, -1, -6, -7, -1, -5, -6, -4,  0, -1, -8, -5, -6,  6,  0, -3]),
'Z' : torch.tensor([-2,  0, -1,  1, -7,  5,  6, -4,  0, -6, -5,  1, -3, -6, -2, -1, -2, -5, -4, -4,  0,  6, -1]),
'X' : torch.tensor([-1, -2, -2, -3, -4, -2, -2, -3, -2, -2, -2, -2, -2, -3, -3, -1, -1, -5, -3, -2, -3, -1, -2]),
}def get_seq_graph_info(pdbfilepath):struct = parser.get_structure(0,pdbfilepath)model = struct.get_models().__next__()seq = []graph = dgl.DGLGraph()residue_num = 0for chain in model.get_chains():residues = chain.get_residues()# print(chain)chain_start_flag = 1for residue in residues:res_name = three2one[residue.get_resname()]seq.append(res_name)pos_feature = torch.from_numpy(residue['CA'].get_coord()).unsqueeze(0)residue_feature = AA_feature_blosum80[res_name].unsqueeze(0)graph.add_nodes(1, {'pos': pos_feature, 'res': residue_feature})if chain_start_flag == 0 :graph.add_edges(torch.tensor([residue_num-1]), torch.tensor([residue_num]), {'feat': Peptide_bond_feature})graph.add_edges(torch.tensor([residue_num]), torch.tensor([residue_num-1]), {'feat': Peptide_bond_feature})residue_num += 1chain_start_flag = 0return seq,graphpdb_data_dir = 'D:\PVT\data'
file_list = [os.path.join(pdb_data_dir, file) for file in os.listdir(pdb_data_dir)]
for file in file_list:if file.endswith('.pdb'):print("processing "+file)seq,graph = get_seq_graph_info(file)print(seq)print(graph)print("finished!")

运行结果:

点数61,边数120

可以看出这个蛋白质只是一条肽链

这样我们就从PDB文件中得到了 氨基酸序列和蛋白质的图

接下来就可以愉快地使用GNN之类的东西提取特征啦

这篇关于蛋白质PDB文件解析+建图(biopython+DGL)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957729

相关文章

解析 XML 和 INI

XML 1.TinyXML库 TinyXML是一个C++的XML解析库  使用介绍: https://www.cnblogs.com/mythou/archive/2011/11/27/2265169.html    使用的时候,只要把 tinyxml.h、tinystr.h、tinystr.cpp、tinyxml.cpp、tinyxmlerror.cpp、tinyxmlparser.

tf.split()函数解析

API原型(TensorFlow 1.8.0): tf.split(     value,     num_or_size_splits,     axis=0,     num=None,     name='split' ) 这个函数是用来切割张量的。输入切割的张量和参数,返回切割的结果。  value传入的就是需要切割的张量。  这个函数有两种切割的方式: 以三个维度的张量为例,比如说一

陀螺仪LSM6DSV16X与AI集成(8)----MotionFX库解析空间坐标

陀螺仪LSM6DSV16X与AI集成.8--MotionFX库解析空间坐标 概述视频教学样品申请源码下载开启CRC串口设置开启X-CUBE-MEMS1设置加速度和角速度量程速率选择设置FIFO速率设置FIFO时间戳批处理速率配置过滤链初始化定义MotionFX文件卡尔曼滤波算法主程序执行流程lsm6dsv16x_motion_fx_determin欧拉角简介演示 概述 本文将探讨

【文末附gpt升级秘笈】腾讯元宝AI搜索解析能力升级:千万字超长文处理的新里程碑

腾讯元宝AI搜索解析能力升级:千万字超长文处理的新里程碑 一、引言 随着人工智能技术的飞速发展,自然语言处理(NLP)和机器学习(ML)在各行各业的应用日益广泛。其中,AI搜索解析能力作为信息检索和知识抽取的核心技术,受到了广泛的关注和研究。腾讯作为互联网行业的领军企业,其在AI领域的探索和创新一直走在前列。近日,腾讯旗下的AI大模型应用——腾讯元宝,迎来了1.1.7版本的升级,新版本在AI搜

消息认证码解析

1. 什么是消息认证码         消息认证码(Message Authentication Code)是一种确认完整性并进行认证的技术,取三个单词的首字母,简称为MAC。         消息认证码的输入包括任意长度的消息和一个发送者与接收者之间共享的密钥,它可以输出固定长度的数据,这个数据称为MAC值。         根据任意长度的消息输出固定长度的数据,这一点和单向散列函数很类似

问题1,PE文件转到内存中出现解析PE不正确的问题

1,使用fopen(FileName, “r”) r的方式读取文件到内存,此时就可能存在问题了,r以只读方式,有时候不表示字符的有可能就不读了,那么内存中就不会是完整的原始文件。所以此时要采用rb,二进制读取的方式。 bool ReadFileToMem(char* FileName, char**buf) { FILE* f; f = fopen(FileName, “rb”); if

[大师C语言(第三十六篇)]C语言信号处理:深入解析与实战

引言 在计算机科学中,信号是一种软件中断,它允许进程之间或进程与内核之间进行通信。信号处理是操作系统中的一个重要概念,它允许程序对各种事件做出响应,例如用户中断、硬件异常和系统调用。C语言作为一门接近硬件的编程语言,提供了强大的信号处理能力。本文将深入探讨C语言信号处理的技术和方法,帮助读者掌握C语言处理信号的高级技巧。 第一部分:C语言信号处理基础 1.1 信号的概念 在Unix-lik

免费内网穿透工具 ,快解析内网穿透解决方案

在IPv4公网IP严重不足的环境下,内网穿透技术越来越多的被人们所使用,使用内网穿透技术的好处有很多。 1:无需公网ip 物以稀为贵,由于可用的公网IP地址越来越少,价格也是水涨船高,一个固定公网IP一年的成本要上万,而使用内网穿透技术则不需要公网IP的支持。 2:提高安全性 使用内网穿透技术,无需在路由器映射端口,我们知道黑客通常会使用端口扫描来寻找攻击对象,不映射端口能大大提高服务器的安全

混合密码系统解析

1. 概述         混合密码系统(hybrid cryptosystem)是将对称密码和非对称密码的优势相结合的方法。一般情况下,将两种不同的方式相结合的做法就称为混合(hybrid)。用混合动力汽车来类比的话,就相当于是一种将发动机(对称密码)和电动机(非对称密码)相结合的系统。         混合密码系统中会先用快速的对称密码来对消息进行加密,这样消息就被转换为了密文从而也就保证

带你解析Dagger2

1. Dagger2简介: Dagger2是Dagger1的分支,由谷歌公司接手开发,目前的版本是2.0。Dagger2是受到AutoValue项目的启发。 刚开始,Dagger2解决问题的基本思想是:利用生成和写的代码混合达到看似所有的产生和提供依赖的代码都是手写的样子。 Dagger2具有以下好处: 1) 依赖的注入和配置独立于组件之外,注入的对象在一个独立、不耦合的地方初始化,这样在改