深度学习Day-15:LSTM实现火灾预测

2024-05-03 18:52

本文主要是介绍深度学习Day-15:LSTM实现火灾预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🍨 本文为:[🔗365天深度学习训练营] 中的学习记录博客
 🍖 原作者:[K同学啊 | 接辅导、项目定制]

要求:

  1. 了解LSTM是什么,并使用其构建一个完整的程序;
  2. R2达到0.83;

一、 基础配置

  • 语言环境:Python3.7
  • 编译器选择:Pycharm
  • 深度学习环境:TensorFlow2.4.1
  • 数据集:私有数据集

二、 前期准备 

1.设置GPU

import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用tf.config.set_visible_devices([gpus[0]],"GPU")# 打印显卡信息,确认GPU可用
print(gpus)

根据个人设备情况,选择使用GPU/CPU进行训练,若GPU可用则输出:

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

由于在设备上安装的CUDA版本与TensorFlow版本不一致,故这里直接安装了CPU版的TensorFlow,无上述输出。

2. 导入数据

本项目所采用的数据集未收录于公开数据中,故需要自己在文件目录中导入相应数据集合,并设置对应文件目录,以供后续学习过程中使用。

运行下述代码,实现文件写入:

import  pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as snsdf_1 = pd.read_csv("./data/woodpine2.csv")

3.数据可视化 

通过运行下述代码

plt.rcParams['savefig.dpi'] = 500
plt.rcParams['figure.dpi'] = 500fig,ax = plt.subplots(1,3,constrained_layout = True , figsize = (14,3))sns.lineplot(data=df_1["Tem1"],ax=ax[0])
sns.lineplot(data=df_1["CO 1"],ax=ax[1])
sns.lineplot(data=df_1["Soot 1"],ax=ax[2])plt.show()

可以得到如下输出:

三、数据预处理

1.设置X,y

首先通过下面代码,将数据集一列的时间行去除(即保留第二列值最后一列的所有列),并按照序号的形式排列:

dataFrame = df_1.iloc[:,1:]
print(dataFrame)

得到如下输出:

       Tem1      CO 1    Soot 1
0      25.0  0.000000  0.000000
1      25.0  0.000000  0.000000
2      25.0  0.000000  0.000000
3      25.0  0.000000  0.000000
4      25.0  0.000000  0.000000
...     ...       ...       ...
5943  295.0  0.000077  0.000496
5944  294.0  0.000077  0.000494
5945  292.0  0.000077  0.000491
5946  291.0  0.000076  0.000489
5947  290.0  0.000076  0.000487[5948 rows x 3 columns]

因为需要实现:使用1-8时刻段预测9时刻段,则通过下述代码做好长度的确定:

width_X = 8
width_y = 1

接着,我们根据刚刚确定的长度,对数据进行划分:

X = []
y = []in_start = 0for _,_ in df_1.iterrows():in_end = in_start + width_Xout_end = in_end + width_yif out_end < len(dataFrame):X_ = np.array(dataFrame.iloc[in_start:in_end,])X_ = X_.reshape((len(X_)*3))y_ = np.array(dataFrame.iloc[in_end:out_end,0])X.append(X_)y.append(y_)in_start += 1X = np.array(X)
y = np.array(y)print(X.shape,y.shape)

得到如下输出: 

(5939, 24) (5939, 1)

2.归一化

from sklearn.preprocessing import MinMaxScalersc = MinMaxScaler(feature_range=(0,1))
X_scaled = sc.fit_transform(X)
print(X_scaled.shape)

得到如下输出:

(5939, 24)

通过运行下述代码:

X_scaled = X_scaled.reshape(len(X_scaled),width_X,3)
print(X_scaled.shape)

 得到如下输出:

(5939, 8, 3)

 3.划分数据集

取5000之前的数据作为训练集,5000之后的数据作为验证集:

X_train = np.array(X_scaled[:5000]).astype('float64')
y_train = np.array(y[:5000]).astype('float64')X_test = np.array(X_scaled[5000:]).astype('float64')
y_test = np.array(y[5000:]).astype('float64')print(X_train.shape)

得到如下输出:

(5000, 8, 3)

四、构建模型

from tensorflow.keras.models import Sequential
from  tensorflow.keras.layers import Dense,LSTMmodel_lstm = Sequential()
model_lstm.add(LSTM(units=64,activation='relu',return_sequences=True,input_shape=(X_train.shape[1],3)))
model_lstm.add(LSTM(units=64,activation='relu'))
model_lstm.add(Dense(width_y))

通过上述代码,构建了一个包含两个LSTM层和一个全连接层的LSTM模型。这个模型将接受形状为 (X_train.shape[1], 3) 的输入,其中 X_train.shape[1] 是时间步数,3 是每个时间步的特征数。

五、 编译模型 

通过下列示例代码:

model_lstm.compile(loss='mean_squared_error',optimizer=tf.keras.optimizers.Adam(1e-3))

六、训练模型 

通过下列示例代码:

history = model_lstm.fit(X_train,y_train,epochs = 40,batch_size = 64,validation_data=(X_test,y_test),validation_freq= 1)

运行得到如下输出: 

Epoch 1/40
79/79 [==============================] - 2s 8ms/step - loss: 17138.3194 - val_loss: 387.7700
Epoch 2/40
79/79 [==============================] - 0s 5ms/step - loss: 156.8192 - val_loss: 84.9699
Epoch 3/40
79/79 [==============================] - 0s 5ms/step - loss: 81.8648 - val_loss: 68.5054
Epoch 4/40
79/79 [==============================] - 0s 5ms/step - loss: 68.0213 - val_loss: 59.3978
Epoch 5/40
79/79 [==============================] - 0s 5ms/step - loss: 55.6423 - val_loss: 47.6963
Epoch 6/40
79/79 [==============================] - 0s 5ms/step - loss: 38.9104 - val_loss: 22.8840
Epoch 7/40
79/79 [==============================] - 0s 5ms/step - loss: 20.2978 - val_loss: 17.1035
Epoch 8/40
79/79 [==============================] - 0s 5ms/step - loss: 13.7244 - val_loss: 12.1882
Epoch 9/40
79/79 [==============================] - 0s 5ms/step - loss: 10.3110 - val_loss: 8.4652
Epoch 10/40
79/79 [==============================] - 0s 5ms/step - loss: 7.0844 - val_loss: 7.8640
Epoch 11/40
79/79 [==============================] - 0s 5ms/step - loss: 7.1910 - val_loss: 5.8354
Epoch 12/40
79/79 [==============================] - 0s 5ms/step - loss: 6.7678 - val_loss: 7.7343
Epoch 13/40
79/79 [==============================] - 0s 5ms/step - loss: 6.6999 - val_loss: 5.7382
Epoch 14/40
79/79 [==============================] - 0s 5ms/step - loss: 7.1541 - val_loss: 5.1997
Epoch 15/40
79/79 [==============================] - 0s 5ms/step - loss: 6.5144 - val_loss: 6.5061
Epoch 16/40
79/79 [==============================] - 0s 5ms/step - loss: 7.3389 - val_loss: 5.5619
Epoch 17/40
79/79 [==============================] - 0s 5ms/step - loss: 5.2598 - val_loss: 6.1282
Epoch 18/40
79/79 [==============================] - 0s 5ms/step - loss: 5.5437 - val_loss: 5.1723
Epoch 19/40
79/79 [==============================] - 0s 5ms/step - loss: 5.5292 - val_loss: 5.1508
Epoch 20/40
79/79 [==============================] - 0s 5ms/step - loss: 6.0629 - val_loss: 6.0754
Epoch 21/40
79/79 [==============================] - 0s 5ms/step - loss: 6.0709 - val_loss: 6.4894
Epoch 22/40
79/79 [==============================] - 0s 5ms/step - loss: 6.0648 - val_loss: 21.8828
Epoch 23/40
79/79 [==============================] - 0s 5ms/step - loss: 8.5592 - val_loss: 5.8904
Epoch 24/40
79/79 [==============================] - 0s 5ms/step - loss: 6.3601 - val_loss: 5.2167
Epoch 25/40
79/79 [==============================] - 0s 5ms/step - loss: 5.5161 - val_loss: 9.1012
Epoch 26/40
79/79 [==============================] - 0s 5ms/step - loss: 7.0404 - val_loss: 5.1254
Epoch 27/40
79/79 [==============================] - 0s 5ms/step - loss: 5.1161 - val_loss: 5.8873
Epoch 28/40
79/79 [==============================] - 0s 5ms/step - loss: 5.6961 - val_loss: 5.6163
Epoch 29/40
79/79 [==============================] - 0s 5ms/step - loss: 5.9653 - val_loss: 4.9996
Epoch 30/40
79/79 [==============================] - 0s 5ms/step - loss: 7.2178 - val_loss: 6.9434
Epoch 31/40
79/79 [==============================] - 0s 5ms/step - loss: 6.4113 - val_loss: 24.5538
Epoch 32/40
79/79 [==============================] - 0s 5ms/step - loss: 12.1477 - val_loss: 5.6929
Epoch 33/40
79/79 [==============================] - 0s 5ms/step - loss: 6.0340 - val_loss: 8.0783
Epoch 34/40
79/79 [==============================] - 0s 5ms/step - loss: 8.2311 - val_loss: 6.0748
Epoch 35/40
79/79 [==============================] - 0s 5ms/step - loss: 6.2481 - val_loss: 14.7295
Epoch 36/40
79/79 [==============================] - 0s 5ms/step - loss: 11.7388 - val_loss: 5.4054
Epoch 37/40
79/79 [==============================] - 0s 5ms/step - loss: 5.7323 - val_loss: 6.3847
Epoch 38/40
79/79 [==============================] - 0s 5ms/step - loss: 7.3201 - val_loss: 5.1389
Epoch 39/40
79/79 [==============================] - 0s 5ms/step - loss: 5.7554 - val_loss: 5.1562
Epoch 40/40
79/79 [==============================] - 0s 5ms/step - loss: 5.4301 - val_loss: 5.4044

模型训练结果为:loss大致回归

六、 模型评估

1.Loss与Accuracy图

import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falseplt.figure(figsize=(5, 3),dpi=120)plt.plot(history.history['loss'],label = 'LSTM Training Loss')
plt.plot(history.history['val_loss'],label = 'LSTM Validation Loss')plt.title('Training and Validation Accuracy')
plt.legend()
plt.show()

得到的可视化结果:

2.调用模型进行预测

通过:

predicted_y_lstm = model_lstm.predict(X_test)y_tset_one = [i[0] for i in y_test]
predicted_y_lstm_one = [i[0] for i in predicted_y_lstm]plt.figure(figsize=(5,3),dpi=120)
plt.plot(y_tset_one[:1000],color = 'red', label = '真实值')
plt.plot(predicted_y_lstm_one[:1000],color = 'blue', label = '预测值')plt.title('Title')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.show()

得到:

3. 查看误差

通过:

from  sklearn import metricsRMSE_lstm = metrics.mean_squared_error(predicted_y_lstm,y_test)**0.5
R2_lstm = metrics.r2_score(predicted_y_lstm,y_test)print('均方根误差:%.5f' % RMSE_lstm)
print('R2:%.5f' % R2_lstm)

得到:

均方根误差:2.32473
R2:0.99873

 可见,R2 = 0.99873,优于要求中的 0.83。

七、个人理解

本项目为通过LSTM来实现火灾的预测,需要根据给定的CSV文件来实现该目标。

  1. 本项目中,实现了对表格数据的可视化及异步预测,即通过前一段时刻得到的数据预测后续某一特定时刻的数据情况;
  2. LSTM可以理解为升级版的RNN,传统的RNN中存在着“梯度爆炸”和“短时记忆”的问题,向RNN中加入了遗忘门、输入门及输出门使得困扰RNN的问题得到了一定的解决;
  3. 关于LSTM的实现流程:(1、单输出时间步)单输入单输出、多输入单输出、多输入多输出(2、多输出时间步)单输入单输出、多输入单输出、多输入多输出;
  4. 针对本项目中的拔高要求,目前未能实现;

这篇关于深度学习Day-15:LSTM实现火灾预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957408

相关文章

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Python使用qrcode库实现生成二维码的操作指南

《Python使用qrcode库实现生成二维码的操作指南》二维码是一种广泛使用的二维条码,因其高效的数据存储能力和易于扫描的特点,广泛应用于支付、身份验证、营销推广等领域,Pythonqrcode库是... 目录一、安装 python qrcode 库二、基本使用方法1. 生成简单二维码2. 生成带 Log

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

C#实现WinForm控件焦点的获取与失去

《C#实现WinForm控件焦点的获取与失去》在一个数据输入表单中,当用户从一个文本框切换到另一个文本框时,需要准确地判断焦点的转移,以便进行数据验证、提示信息显示等操作,本文将探讨Winform控件... 目录前言获取焦点改变TabIndex属性值调用Focus方法失去焦点总结最后前言在一个数据输入表单

基于C#实现PDF文件合并工具

《基于C#实现PDF文件合并工具》这篇文章主要为大家详细介绍了如何基于C#实现一个简单的PDF文件合并工具,文中的示例代码简洁易懂,有需要的小伙伴可以跟随小编一起学习一下... 界面主要用于发票PDF文件的合并。经常出差要报销的很有用。代码using System;using System.Col

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后