C++奇迹之旅:C++内存管理的机制(进阶篇)

2024-05-03 12:44

本文主要是介绍C++奇迹之旅:C++内存管理的机制(进阶篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述

文章目录

  • 📝new和delete操作自定义类型
  • 🌠 operator new与operator delete函数
    • 🌉operator new与operator delete函数
  • 🌠new和delete的实现原理
    • 🌉内置类型
    • 🌉自定义类型
  • 🌠定位new表达式(placement-new)
  • 🚩总结


📝new和delete操作自定义类型

我们先看mallocfree,调试可以发现并不会调用析构函数

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;}
private:int _a;
};int main()
{A* p1 = (A*)malloc(sizeof(A));free(p1);return 0;
}

在这里插入图片描述
再看newdelete

A* p2 = new A(1);
delete p2;

在这里插入图片描述
总结:
new/deletemalloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数
而对于内置类型几乎是一样的

int* p3 = (int*)malloc(sizeof(int));
int* p4 = new int;
free(p3);
delete p4;

这是汇编一览图:
此时多出来了一个operator new这是什么,为什么new会去调用operator new

00482C36    call   operator new(048114Ah )

在这里插入图片描述

🌠 operator new与operator delete函数

🌉operator new与operator delete函数

newdelete是用户进行动态内存申请和释放的操作符,operator newoperator delete是系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间

void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{// try to allocate size bytesvoid* p;while ((p = malloc(size)) == 0)if (_callnewh(size) == 0){// report no memory// 如果申请内存失败了,这里会抛出bad_alloc 类型异常static const std::bad_alloc nomem;_RAISE(nomem);}return (p);
}

operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间失败,尝试执行空 间不足应对措施,如果改应对措施用户设置了,则继续申请,否则抛异常。

// report no memory
// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
static const std::bad_alloc nomem;

operator delete: 该函数最终是通过free来释放空间的

void operator delete(void* pUserData)
{_CrtMemBlockHeader* pHead;RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));if (pUserData == NULL)return;_mlock(_HEAP_LOCK); /* block other threads */__TRY/* get a pointer to memory block header */pHead = pHdr(pUserData);/* verify block type */_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));_free_dbg(pUserData, pHead->nBlockUse);__FINALLY_munlock(_HEAP_LOCK); /* release other threads */__END_TRY_FINALLYreturn;
}

free的实现

#define free(p) _free_dbg(p, _NORMAL_BLOCK)

如抛异常例子:

double Division(int a, int b)
{// 当b == 0时抛出异常if (b == 0)throw "Division by zero condition!";elsereturn ((double)a / (double)b);
}void Func()
{int len, time;cin >> len >> time;cout << Division(len, time) << endl;
}int main()
{try {Func();}catch(const char* errmsg){//当 Division(len, time) 函数抛出这种异常时,异常对象会被赋值给 errmsg 变量。
//然后,这个 catch 块会输出 errmsg 的内容,即 "Division by zero condition!"cout << errmsg << endl;}catch (...){//这个 catch 块用于捕获任何其他类型的未知异常。
//当 try 块中发生任何其他类型的异常时,这个 catch 块会被执行。
//它会输出 "unkown exception"。cout << "unkown exception" << endl;}return 0;
}

当你输入两个数让b == 0时程序抛异常,抛出"Division by zero condition!"他不会再回到Func()函数中的cout << Division(len, time) << endl;而是会跳到catch(const char* errmsg)中,异常对象会被赋值给 errmsg 变量。然后,这个 catch 块会输出 errmsg 的内容,即 "Division by zero condition!",程序结束。

总结:
通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。

🌠new和delete的实现原理

🌉内置类型

如果申请的是内置类型的空间,newmallocdeletefree基本类似,不同的地方是:new/delete申请和释放的是单个元素的空间,new[]delete[]申请的是连续空间,而且new在申请空间失败时会抛异常,malloc会返回NULL

🌉自定义类型

new的原理

  1. 调用operator new函数申请空间
  2. 在申请的空间上执行构造函数,完成对象的构造
    在这里插入图片描述
    delete的原理
  3. 在空间上执行析构函数,完成对象中资源的清理工作
  4. 调用operator delete函数释放对象的空间
class Stack 
{
public:// 构造函数Stack(int initialCapacity = 10) : _a(new int[initialCapacity]), _top(0), _capacity(initialCapacity) {}// 析构函数~Stack() {delete[] _a;}// 压入元素void push(int value) {// 如果栈已满,需要扩容if (_top == _capacity) {resize(2 * _capacity);}// 将元素压入栈顶_a[_top++] = value;}// 弹出栈顶元素int pop() {// 如果栈为空,抛出异常if (_top == 0) {throw runtime_error("Stack is empty");}// 弹出栈顶元素并返回return _a[--_top];}// 判断栈是否为空bool empty() const {return _top == 0;}// 返回栈中元素的个数int size() const {return _top;}private:// 扩容函数,分配新的数组空间并移动元素void resize(int newCapacity) {// 分配新的数组空间int* newArray = new int[newCapacity];// 使用 std::move 将原数组中的元素移动到新数组中move(_a, _a + _top, newArray);// 释放原数组空间delete[] _a;// 更新数组指针和容量_a = newArray;_capacity = newCapacity;}// 存储元素的数组指针int* _a;// 栈顶元素的索引int _top;// 数组的容量int _capacity;
};int main() 
{// 创建一个栈Stack* p3 = new Stack;// 释放栈的内存delete p3; 压入三个元素//p3->push(1);//p3->push(2);//p3->push(3); 依次弹出并打印元素//while (!p3->empty()) //{//    cout << p3->pop() << " ";//}//cout << endl;return 0;
}

在这里插入图片描述

先析构_a指向的空间,再释放p3指向的空间

new T[N]的原理

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申
  2. 在申请的空间上执行N次构造函数

delete[]的原理
3. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
4. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;}
private:int _a;
};int main()
{A* p1 = new A;A* p2 = new A[10];delete p1;delete[] p2;return 0;
}

在这里插入图片描述
A类只有一个4字节大小的int成员变量。那么,创建一个A类型的对象应该需要4字节的内存空间。A* p2 = new A[10];这我们动态创建了一个包含10个A对象的数组。10 * 4 = 40 bytes,为什么是44bite呢?
在动态分配数组内存时,编译器通常会在实际的数组内存之前分配一些额外的空间,用于存储数组的元素个数等信息。这样做的目的是为了在执行delete[]操作时,能够正确地调用所有元素的析构函数。

总结:都开4byte存储对象个数,方便delete[]时,知道有多少个对象,要调用多少次析构函数

在这里插入图片描述
内置类型就没有额外开空间:
因为,内置类型已经固定好,无需调用析构函数

int* p3 = new int[10];
delete[] p3;

在这里插入图片描述

🌠定位new表达式(placement-new)

定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象
使用格式:

new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针,initializer-list是类型的初始化列表

使用场景:
定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。

class A
{
public:A(int a = 0): _a(a){cout << "A():" << this << endl;}~A(){cout << "~A():" << this << endl;}
private:int _a;
};// 定位new/replacement new
int main()
{// p1现在指向的只不过是与A对象相同大小的一段空间,还不能算是一个对象,因为构造函数没有执行A* p1 = (A*)malloc(sizeof(A));new(p1)A; // 注意:如果A类的构造函数有参数时,此处需要传参p1->~A();free(p1);A* p2 = (A*)operator new(sizeof(A));new(p2)A(10);p2->~A();operator delete(p2);return 0;
}
 A* p1 = (A*)malloc(sizeof(A));

使用malloc()函数分配了一块与A类对象大小相同的内存空间,但此时p1指向的只是一块内存空间,还不是一个真正的A对象,因为A的构造函数还没有被调用。

new(p1)A;

使用"定位new"的语法在已分配的内存空间上构造一个A对象。如果A类的构造函数有参数,需要在这里传入参数,例如new(p2)A(10);

 p1->~A();

显式地调用A对象的析构函数,释放对象占用的资源。

 free(p1);

free()函数释放之前使用malloc()分配的内存空间。


🚩总结

请添加图片描述

这篇关于C++奇迹之旅:C++内存管理的机制(进阶篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956772

相关文章

关于C++中的虚拟继承的一些总结(虚拟继承,覆盖,派生,隐藏)

1.为什么要引入虚拟继承 虚拟继承是多重继承中特有的概念。虚拟基类是为解决多重继承而出现的。如:类D继承自类B1、B2,而类B1、B2都继承自类A,因此在类D中两次出现类A中的变量和函数。为了节省内存空间,可以将B1、B2对A的继承定义为虚拟继承,而A就成了虚拟基类。实现的代码如下: class A class B1:public virtual A; class B2:pu

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

C++的模板(八):子系统

平常所见的大部分模板代码,模板所传的参数类型,到了模板里面,或实例化为对象,或嵌入模板内部结构中,或在模板内又派生了子类。不管怎样,最终他们在模板内,直接或间接,都实例化成对象了。 但这不是唯一的用法。试想一下。如果在模板内限制调用参数类型的构造函数会发生什么?参数类的对象在模板内无法构造。他们只能从模板的成员函数传入。模板不保存这些对象或者只保存他们的指针。因为构造函数被分离,这些指针在模板外

C++工程编译链接错误汇总VisualStudio

目录 一些小的知识点 make工具 可以使用windows下的事件查看器崩溃的地方 dumpbin工具查看dll是32位还是64位的 _MSC_VER .cc 和.cpp 【VC++目录中的包含目录】 vs 【C/C++常规中的附加包含目录】——头文件所在目录如何怎么添加,添加了以后搜索头文件就会到这些个路径下搜索了 include<> 和 include"" WinMain 和

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

C/C++的编译和链接过程

目录 从源文件生成可执行文件(书中第2章) 1.Preprocessing预处理——预处理器cpp 2.Compilation编译——编译器cll ps:vs中优化选项设置 3.Assembly汇编——汇编器as ps:vs中汇编输出文件设置 4.Linking链接——链接器ld 符号 模块,库 链接过程——链接器 链接过程 1.简单链接的例子 2.链接过程 3.地址和

用Microsoft.Extensions.Hosting 管理WPF项目.

首先引入必要的包: <ItemGroup><PackageReference Include="CommunityToolkit.Mvvm" Version="8.2.2" /><PackageReference Include="Microsoft.Extensions.Hosting" Version="8.0.0" /><PackageReference Include="Serilog

C++必修:模版的入门到实践

✨✨ 欢迎大家来到贝蒂大讲堂✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 所属专栏:C++学习 贝蒂的主页:Betty’s blog 1. 泛型编程 首先让我们来思考一个问题,如何实现一个交换函数? void swap(int& x, int& y){int tmp = x;x = y;y = tmp;} 相信大家很快就能写出上面这段代码,但是如果要求这个交换函数支持字符型

关于如何更好管理好数据库的一点思考

本文尝试从数据库设计理论、ER图简介、性能优化、避免过度设计及权限管理方面进行思考阐述。 一、数据库范式 以下通过详细的示例说明数据库范式的概念,将逐步规范化一个例子,逐级说明每个范式的要求和变换过程。 示例:学生课程登记系统 初始表格如下: 学生ID学生姓名课程ID课程名称教师教师办公室1张三101数学王老师101室2李四102英语李老师102室3王五101数学王老师101室4赵六103物理陈

C++入门01

1、.h和.cpp 源文件 (.cpp)源文件是C++程序的实际实现代码文件,其中包含了具体的函数和类的定义、实现以及其他相关的代码。主要特点如下:实现代码: 源文件中包含了函数、类的具体实现代码,用于实现程序的功能。编译单元: 源文件通常是一个编译单元,即单独编译的基本单位。每个源文件都会经过编译器的处理,生成对应的目标文件。包含头文件: 源文件可以通过#include指令引入头文件,以使