C++的模板(八):子系统

2024-06-24 14:28
文章标签 模板 c++ 子系统

本文主要是介绍C++的模板(八):子系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

平常所见的大部分模板代码,模板所传的参数类型,到了模板里面,或实例化为对象,或嵌入模板内部结构中,或在模板内又派生了子类。不管怎样,最终他们在模板内,直接或间接,都实例化成对象了。

但这不是唯一的用法。试想一下。如果在模板内限制调用参数类型的构造函数会发生什么?参数类的对象在模板内无法构造。他们只能从模板的成员函数传入。模板不保存这些对象或者只保存他们的指针。因为构造函数被分离,这些指针在模板外可以被派生类构造,因此可以是多态的。这就有了一点子系统或者framework的意味了:


template <class Event, class Response>
class SubSystem{
public:map<Event*, Response*>  table;
public:void bind(Event *e, Response *r);void unbind(Event *e);
public:int OnMessage(Event *e);
};

上面示例的子系统,绑定了事件和响应的关系,并处理收到的消息。他不使用参数类型的构造函数。因此,就允许了Event和Response的多态存在。当然也可以直接用Event和Response的派生类来实例化这个模板,这样做就丢弃了派生类的别的分支了:

class Event {
public:int ev_id;~Event(){printf("~Event(id_%d)\n", ev_id);}
};
class Response{
public:virtual int handler()=0;virtual ~Response(){}
};
class ResponseA: public Response
{int a;
public:ResponseA(int A){ a=A;}int handler();~ResponseA(){printf("~R(%d)\n", a);}
};
class ResponseB: public Response
{double b;
public:ResponseB(double B){ b=B;}int handler();~ResponseB(){printf("~R(%lf)\n", b);}
};
template SubSystem<Event, Response>;template SubSystem<Event, ResponseA>;
template SubSystem<Event, ResponseB>;

好了,可以准备试用一下这个子系统。用bind()函数组织一张event, response 的对照表。然后用OnMessage()来处理消息。当然,这个模型太简陋了。真实的子系统会有更复杂的内容。

在试用之前,考虑一下在这个系统外参数类对象的构造。他们在main()函数中构造,并在函数结束时析构。或者用一个list管理器自动的管理他们:

template <class T>
class DMM {
public:list<T*> l;~DMM(){typename list<T*>::iterator it;it=l.begin();while(it!= l.end()) {delete *it;it++;}}template <class O>T* NewObj(O o) {T *r= new T(o); l.push_back(r); return r;}
};

这已经足够。怪名字DMM意思是动态内存管理。避免构造函数就有了多态和子系统。少即是多。看来这是真的了。

main()函数大致是这样的:

int main()
{Event *pe;Response *pr;SubSystem<Event,Response> mys;DMM<Event> de;DMM<Response> dr;pe = new Event;de.l.insert(de.l.end(), pe);pe->ev_id=1;pr= ((DMM<ResponseA>&)dr).NewObj(3);mys.bind(pe, pr);pe = new(Event);de.l.push_back(pe);pe->ev_id=2;pr= ((DMM<ResponseB>&)dr).NewObj(3.14);mys.bind(pe, pr);Event e;e.ev_id=2;pe=find(de.l, e);mys.OnMessage(pe);return 0;
}

这里有2个((DMM&)dr)、((DMM&)dr)的强制类型转换。ResponseA、ResponseB都是Response类的派生类。dr中的list存的又是他们的基类指针,这样转化当然没问题。

现在可以跑一下了,运行结果是:

response B(=3.140000)
~Event(id_2)
~R(3)
~R(3.140000)
~Event(id_1)
~Event(id_2)

最后,贴上完整的源代码。因为自称子系统,又写得太简陋了,很不好意思贴上来。自己扩充吧!

#include <stdio.h>
#include <list>
#include <map>
using namespace std;class Event {
public:int ev_id;~Event(){printf("~Event(id_%d)\n", ev_id);}
};
class Response{
public:virtual int handler()=0;virtual ~Response(){}
};
class ResponseA: public Response
{int a;
public:ResponseA(int A){ a=A;}int handler();~ResponseA(){printf("~R(%d)\n", a);}
};
class ResponseB: public Response
{double b;
public:ResponseB(double B){ b=B;}int handler();~ResponseB(){printf("~R(%lf)\n", b);}
};int ResponseA::handler()
{printf("handle A(=%d)\n",a);return 0;
}
int ResponseB::handler()
{printf("response B(=%lf)\n",b);return 0;
}template <class Event, class Response>
class SubSystem{
public:map<Event*, Response*>  table;
public:void bind(Event *e, Response *r);void unbind(Event *e);
public:int OnMessage(Event *e);
};template <class Event, class Response>
void SubSystem<Event,Response>::bind(Event *e, Response *r)
{table[e]=r;
}template <class Event, class Response>
void SubSystem<Event,Response>::unbind(Event *e)
{table.erase(e);
}template <class Event, class Response>
int SubSystem<Event,Response>::OnMessage(Event *e)
{Response *r;r= table[e];if(!r) return 0;return r->handler();
}template <class T>
class DMM {
public:list<T*> l;~DMM(){typename list<T*>::iterator it;it=l.begin();while(it!= l.end()) {delete *it;it++;}}template <class O>T* NewObj(O o) {T *r= new T(o); l.push_back(r); return r;}
};Event *find(list<Event*> &l, Event &e)
{list<Event*>::iterator i;for(i=l.begin(); i!=l.end(); i++) {if ((*i)->ev_id==e.ev_id) return *i;}return 0;
}int main()
{Event *pe;Response *pr;SubSystem<Event,Response> mys;DMM<Event> de;DMM<Response> dr;pe = new Event;de.l.insert(de.l.end(), pe);pe->ev_id=1;pr= ((DMM<ResponseA>&)dr).NewObj(3);mys.bind(pe, pr);pe = new(Event);de.l.push_back(pe);pe->ev_id=2;pr= ((DMM<ResponseB>&)dr).NewObj(3.14);mys.bind(pe, pr);Event e;e.ev_id=2;pe=find(de.l, e);mys.OnMessage(pe);return 0;
}

这篇关于C++的模板(八):子系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1090406

相关文章

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

poj3468(线段树成段更新模板题)

题意:包括两个操作:1、将[a.b]上的数字加上v;2、查询区间[a,b]上的和 下面的介绍是下解题思路: 首先介绍  lazy-tag思想:用一个变量记录每一个线段树节点的变化值,当这部分线段的一致性被破坏我们就将这个变化值传递给子区间,大大增加了线段树的效率。 比如现在需要对[a,b]区间值进行加c操作,那么就从根节点[1,n]开始调用update函数进行操作,如果刚好执行到一个子节点,

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)