OpenCV4.9如何将失焦图片去模糊滤镜(67)

2024-05-03 12:36

本文主要是介绍OpenCV4.9如何将失焦图片去模糊滤镜(67),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 返回:OpenCV系列文章目录(持续更新中......)
上一篇:OpenCV4.9的基于距离变换和分水岭算法的图像分割(66)
下一篇 :OpenCV4.9去运动模糊滤镜(68)

目标

在本教程中,您将学习:

  • 什么是退化图像模型
  • 失焦图像的 PSF 是多少
  • 如何恢复模糊的图像
  • 什么是维纳过滤器

理论

注意

该解释基于书籍[108]和[325]。另外,您可以参考 Matlab 的教程 Matlab 中的图像去模糊 和文章 SmartDeblur.

图像去模糊

图像的模糊或退化可能由许多因素引起:

  • 在图像捕获过程中,通过相机移动或长时间移动 曝光时间由受试者使用

  • 失焦光学元件、使用广角镜头、大气湍流或 曝光时间短,可减少捕获的光子数量

  • 共聚焦显微镜中的散射光畸变

模糊或退化的图像可以用以下方程 g = Hf + n 近似描述。

g

模糊的图像

H

失真算子,也称为点扩散 函数 (PSF)。在空间域中,PSF 描述光学系统模糊(扩散)的程度 光点。PSF 是 光传递函数 (OTF)。在频域中,OTF 描述了线性、位置不变系统对 冲动。OTF 是点差的傅里叶变换 函数 (PSF)。失真运算符,当与 图像,创建失真。点扩散引起的失真 功能只是失真的一种类型。

f

原始真实图像

注意

图像 f 并没有真正 存在。这张图片代表了如果你拥有的话,你会拥有什么 完美的图像采集条件。

n

图像采集过程中引入的加法噪声会损坏 图像

基于该模型,去模糊的基本任务是对模糊进行反卷积 具有准确描述失真的 PSF 的图像。反卷积是一个过程 逆转卷积的影响。

注意

去模糊图像的质量主要取决于对 PSF。

此页面上的失焦图像是真实世界的图像。失焦是通过相机光学器件手动实现的。

什么是退化图像模型?

以下是频域表示中图像退化的数学模型:

其中(S)是模糊(退化)图像的频谱,(U)是原始真实(未退化)图像的频谱,(H)是点扩散函数(PSF)的频率响应,(N)是加性噪声的频谱。

圆形 PSF 是离焦失真的一个很好的近似值。这样的 PSF 仅由一个参数指定 - 半径(R)。本工作使用圆形 PSF。

圆形点扩散功能

如何恢复模糊的图像?

恢复(去模糊)的目的是获得原始图像的估计值。频域中的恢复公式为:

其中(U)是原始图像(U)的估计光谱,(H_w)是恢复滤波器,例如维纳滤波器。

什么是维纳过滤器?

维纳滤镜是一种恢复模糊图像的方法。假设PSF是一个真实对称的信号,原始真实镜像和噪声的功率谱是未知的,那么一个简化的维纳公式是:

其中(SNR)是信噪比。

因此,为了通过维纳滤波器恢复失焦图像,它需要知道圆形PSF的(SNR)和(R)。

源代码

您可以在 OpenCV 源代码库中找到源代码。samples/cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp

#include <iostream>
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"using namespace cv;
using namespace std;void help();
void calcPSF(Mat& outputImg, Size filterSize, int R);
void fftshift(const Mat& inputImg, Mat& outputImg);
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H);
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr);const String keys =
"{help h usage ? | | print this message }"
"{image |original.jpg | input image name }"
"{R |5 | radius }"
"{SNR |100 | signal to noise ratio}"
;int main(int argc, char *argv[])
{help();CommandLineParser parser(argc, argv, keys);if (parser.has("help")){parser.printMessage();return 0;}int R = parser.get<int>("R");int snr = parser.get<int>("SNR");string strInFileName = parser.get<String>("image");samples::addSamplesDataSearchSubDirectory("doc/tutorials/imgproc/out_of_focus_deblur_filter/images");if (!parser.check()){parser.printErrors();return 0;}Mat imgIn;imgIn = imread(samples::findFile( strInFileName ), IMREAD_GRAYSCALE);if (imgIn.empty()) //check whether the image is loaded or not{cout << "ERROR : Image cannot be loaded..!!" << endl;return -1;}Mat imgOut;// it needs to process even image onlyRect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);//Hw calculation (start)Mat Hw, h;calcPSF(h, roi.size(), R);calcWnrFilter(h, Hw, 1.0 / double(snr));//Hw calculation (stop)// filtering (start)filter2DFreq(imgIn(roi), imgOut, Hw);// filtering (stop)imgOut.convertTo(imgOut, CV_8U);normalize(imgOut, imgOut, 0, 255, NORM_MINMAX);imshow("Original", imgIn);imshow("Debluring", imgOut);imwrite("result.jpg", imgOut);waitKey(0);return 0;
}void help()
{cout << "2018-07-12" << endl;cout << "DeBlur_v8" << endl;cout << "You will learn how to recover an out-of-focus image by Wiener filter" << endl;
}void calcPSF(Mat& outputImg, Size filterSize, int R)
{Mat h(filterSize, CV_32F, Scalar(0));Point point(filterSize.width / 2, filterSize.height / 2);circle(h, point, R, 255, -1, 8);Scalar summa = sum(h);outputImg = h / summa[0];
}void fftshift(const Mat& inputImg, Mat& outputImg)
{outputImg = inputImg.clone();int cx = outputImg.cols / 2;int cy = outputImg.rows / 2;Mat q0(outputImg, Rect(0, 0, cx, cy));Mat q1(outputImg, Rect(cx, 0, cx, cy));Mat q2(outputImg, Rect(0, cy, cx, cy));Mat q3(outputImg, Rect(cx, cy, cx, cy));Mat tmp;q0.copyTo(tmp);q3.copyTo(q0);tmp.copyTo(q3);q1.copyTo(tmp);q2.copyTo(q1);tmp.copyTo(q2);
}void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI, DFT_SCALE);Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };Mat complexH;merge(planesH, 2, complexH);Mat complexIH;mulSpectrums(complexI, complexH, complexIH, 0);idft(complexIH, complexIH);split(complexIH, planes);outputImg = planes[0];
}void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
{Mat h_PSF_shifted;fftshift(input_h_PSF, h_PSF_shifted);Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI);split(complexI, planes);Mat denom;pow(abs(planes[0]), 2, denom);denom += nsr;divide(planes[0], denom, output_G);
}

解释

失焦图像恢复算法包括 PSF 生成、Wiener 滤波器生成和频域模糊图像滤波:

 // it needs to process even image onlyRect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);//Hw calculation (start)Mat Hw, h;calcPSF(h, roi.size(), R);calcWnrFilter(h, Hw, 1.0 / double(snr));//Hw calculation (stop)// filtering (start)filter2DFreq(imgIn(roi), imgOut, Hw);// filtering (stop)

函数 calcPSF()根据输入参数半径(R)形成一个圆形 PSF:

void calcPSF(Mat& outputImg, Size filterSize, int R)
{Mat h(filterSize, CV_32F, Scalar(0));Point point(filterSize.width / 2, filterSize.height / 2);circle(h, point, R, 255, -1, 8);Scalar summa = sum(h);outputImg = h / summa[0];
}

函数 calcWnrFilter()根据上述公式合成简化的 Wiener 过滤器(H_w):

void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
{Mat h_PSF_shifted;fftshift(input_h_PSF, h_PSF_shifted);Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI);split(complexI, planes);Mat denom;pow(abs(planes[0]), 2, denom);denom += nsr;divide(planes[0], denom, output_G);
}

函数 fftshift()重新排列 PSF。此代码刚刚从离散傅里叶变换教程中复制而来:

void fftshift(const Mat& inputImg, Mat& outputImg)
{outputImg = inputImg.clone();int cx = outputImg.cols / 2;int cy = outputImg.rows / 2;Mat q0(outputImg, Rect(0, 0, cx, cy));Mat q1(outputImg, Rect(cx, 0, cx, cy));Mat q2(outputImg, Rect(0, cy, cx, cy));Mat q3(outputImg, Rect(cx, cy, cx, cy));Mat tmp;q0.copyTo(tmp);q3.copyTo(q0);tmp.copyTo(q3);q1.copyTo(tmp);q2.copyTo(q1);tmp.copyTo(q2);
}

函数 filter2DFreq()过滤频域中的模糊图像:

void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI, DFT_SCALE);Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };Mat complexH;merge(planesH, 2, complexH);Mat complexIH;mulSpectrums(complexI, complexH, complexIH, 0);idft(complexIH, complexIH);split(complexIH, planes);outputImg = planes[0];
}

结果

下面你可以看到真实的失焦图像:

使用(R)= 53 和(SNR)= 5200 参数计算得出以下结果:

使用维纳滤波器,手动选择(R)和(SNR)的值,以提供最佳的视觉效果。我们可以看到结果并不完美,但它为我们提供了图像内容的提示。虽然有些困难,但文本是可读的。

注意

参数(R)是最重要的。所以你应该先调整(R),然后调整(SNR)。

有时,您可以在恢复的图像中观察到振铃效应。这种影响可以通过几种方法减少。例如,您可以逐渐缩小输入图像边缘。

参考文献:

1、《Out-of-focus Deblur Filter》---Karpushin Vladislav

这篇关于OpenCV4.9如何将失焦图片去模糊滤镜(67)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956758

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

基于Python开发批量提取Excel图片的小工具

《基于Python开发批量提取Excel图片的小工具》这篇文章主要为大家详细介绍了如何使用Python中的openpyxl库开发一个小工具,可以实现批量提取Excel图片,有需要的小伙伴可以参考一下... 目前有一个需求,就是批量读取当前目录下所有文件夹里的Excel文件,去获取出Excel文件中的图片,并

Java实现数据库图片上传与存储功能

《Java实现数据库图片上传与存储功能》在现代的Web开发中,上传图片并将其存储在数据库中是常见的需求之一,本文将介绍如何通过Java实现图片上传,存储到数据库的完整过程,希望对大家有所帮助... 目录1. 项目结构2. 数据库表设计3. 实现图片上传功能3.1 文件上传控制器3.2 图片上传服务4. 实现

Java实现数据库图片上传功能详解

《Java实现数据库图片上传功能详解》这篇文章主要为大家详细介绍了如何使用Java实现数据库图片上传功能,包含从数据库拿图片传递前端渲染,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、数据库搭建&nbsChina编程p; 3、后端实现将图片存储进数据库4、后端实现从数据库取出图片给前端5、前端拿到

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

SpringBoot集成图片验证码框架easy-captcha的详细过程

《SpringBoot集成图片验证码框架easy-captcha的详细过程》本文介绍了如何将Easy-Captcha框架集成到SpringBoot项目中,实现图片验证码功能,Easy-Captcha是... 目录SpringBoot集成图片验证码框架easy-captcha一、引言二、依赖三、代码1. Ea

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...