OpenCV4.9如何将失焦图片去模糊滤镜(67)

2024-05-03 12:36

本文主要是介绍OpenCV4.9如何将失焦图片去模糊滤镜(67),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 返回:OpenCV系列文章目录(持续更新中......)
上一篇:OpenCV4.9的基于距离变换和分水岭算法的图像分割(66)
下一篇 :OpenCV4.9去运动模糊滤镜(68)

目标

在本教程中,您将学习:

  • 什么是退化图像模型
  • 失焦图像的 PSF 是多少
  • 如何恢复模糊的图像
  • 什么是维纳过滤器

理论

注意

该解释基于书籍[108]和[325]。另外,您可以参考 Matlab 的教程 Matlab 中的图像去模糊 和文章 SmartDeblur.

图像去模糊

图像的模糊或退化可能由许多因素引起:

  • 在图像捕获过程中,通过相机移动或长时间移动 曝光时间由受试者使用

  • 失焦光学元件、使用广角镜头、大气湍流或 曝光时间短,可减少捕获的光子数量

  • 共聚焦显微镜中的散射光畸变

模糊或退化的图像可以用以下方程 g = Hf + n 近似描述。

g

模糊的图像

H

失真算子,也称为点扩散 函数 (PSF)。在空间域中,PSF 描述光学系统模糊(扩散)的程度 光点。PSF 是 光传递函数 (OTF)。在频域中,OTF 描述了线性、位置不变系统对 冲动。OTF 是点差的傅里叶变换 函数 (PSF)。失真运算符,当与 图像,创建失真。点扩散引起的失真 功能只是失真的一种类型。

f

原始真实图像

注意

图像 f 并没有真正 存在。这张图片代表了如果你拥有的话,你会拥有什么 完美的图像采集条件。

n

图像采集过程中引入的加法噪声会损坏 图像

基于该模型,去模糊的基本任务是对模糊进行反卷积 具有准确描述失真的 PSF 的图像。反卷积是一个过程 逆转卷积的影响。

注意

去模糊图像的质量主要取决于对 PSF。

此页面上的失焦图像是真实世界的图像。失焦是通过相机光学器件手动实现的。

什么是退化图像模型?

以下是频域表示中图像退化的数学模型:

其中(S)是模糊(退化)图像的频谱,(U)是原始真实(未退化)图像的频谱,(H)是点扩散函数(PSF)的频率响应,(N)是加性噪声的频谱。

圆形 PSF 是离焦失真的一个很好的近似值。这样的 PSF 仅由一个参数指定 - 半径(R)。本工作使用圆形 PSF。

圆形点扩散功能

如何恢复模糊的图像?

恢复(去模糊)的目的是获得原始图像的估计值。频域中的恢复公式为:

其中(U)是原始图像(U)的估计光谱,(H_w)是恢复滤波器,例如维纳滤波器。

什么是维纳过滤器?

维纳滤镜是一种恢复模糊图像的方法。假设PSF是一个真实对称的信号,原始真实镜像和噪声的功率谱是未知的,那么一个简化的维纳公式是:

其中(SNR)是信噪比。

因此,为了通过维纳滤波器恢复失焦图像,它需要知道圆形PSF的(SNR)和(R)。

源代码

您可以在 OpenCV 源代码库中找到源代码。samples/cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp

#include <iostream>
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"using namespace cv;
using namespace std;void help();
void calcPSF(Mat& outputImg, Size filterSize, int R);
void fftshift(const Mat& inputImg, Mat& outputImg);
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H);
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr);const String keys =
"{help h usage ? | | print this message }"
"{image |original.jpg | input image name }"
"{R |5 | radius }"
"{SNR |100 | signal to noise ratio}"
;int main(int argc, char *argv[])
{help();CommandLineParser parser(argc, argv, keys);if (parser.has("help")){parser.printMessage();return 0;}int R = parser.get<int>("R");int snr = parser.get<int>("SNR");string strInFileName = parser.get<String>("image");samples::addSamplesDataSearchSubDirectory("doc/tutorials/imgproc/out_of_focus_deblur_filter/images");if (!parser.check()){parser.printErrors();return 0;}Mat imgIn;imgIn = imread(samples::findFile( strInFileName ), IMREAD_GRAYSCALE);if (imgIn.empty()) //check whether the image is loaded or not{cout << "ERROR : Image cannot be loaded..!!" << endl;return -1;}Mat imgOut;// it needs to process even image onlyRect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);//Hw calculation (start)Mat Hw, h;calcPSF(h, roi.size(), R);calcWnrFilter(h, Hw, 1.0 / double(snr));//Hw calculation (stop)// filtering (start)filter2DFreq(imgIn(roi), imgOut, Hw);// filtering (stop)imgOut.convertTo(imgOut, CV_8U);normalize(imgOut, imgOut, 0, 255, NORM_MINMAX);imshow("Original", imgIn);imshow("Debluring", imgOut);imwrite("result.jpg", imgOut);waitKey(0);return 0;
}void help()
{cout << "2018-07-12" << endl;cout << "DeBlur_v8" << endl;cout << "You will learn how to recover an out-of-focus image by Wiener filter" << endl;
}void calcPSF(Mat& outputImg, Size filterSize, int R)
{Mat h(filterSize, CV_32F, Scalar(0));Point point(filterSize.width / 2, filterSize.height / 2);circle(h, point, R, 255, -1, 8);Scalar summa = sum(h);outputImg = h / summa[0];
}void fftshift(const Mat& inputImg, Mat& outputImg)
{outputImg = inputImg.clone();int cx = outputImg.cols / 2;int cy = outputImg.rows / 2;Mat q0(outputImg, Rect(0, 0, cx, cy));Mat q1(outputImg, Rect(cx, 0, cx, cy));Mat q2(outputImg, Rect(0, cy, cx, cy));Mat q3(outputImg, Rect(cx, cy, cx, cy));Mat tmp;q0.copyTo(tmp);q3.copyTo(q0);tmp.copyTo(q3);q1.copyTo(tmp);q2.copyTo(q1);tmp.copyTo(q2);
}void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI, DFT_SCALE);Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };Mat complexH;merge(planesH, 2, complexH);Mat complexIH;mulSpectrums(complexI, complexH, complexIH, 0);idft(complexIH, complexIH);split(complexIH, planes);outputImg = planes[0];
}void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
{Mat h_PSF_shifted;fftshift(input_h_PSF, h_PSF_shifted);Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI);split(complexI, planes);Mat denom;pow(abs(planes[0]), 2, denom);denom += nsr;divide(planes[0], denom, output_G);
}

解释

失焦图像恢复算法包括 PSF 生成、Wiener 滤波器生成和频域模糊图像滤波:

 // it needs to process even image onlyRect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);//Hw calculation (start)Mat Hw, h;calcPSF(h, roi.size(), R);calcWnrFilter(h, Hw, 1.0 / double(snr));//Hw calculation (stop)// filtering (start)filter2DFreq(imgIn(roi), imgOut, Hw);// filtering (stop)

函数 calcPSF()根据输入参数半径(R)形成一个圆形 PSF:

void calcPSF(Mat& outputImg, Size filterSize, int R)
{Mat h(filterSize, CV_32F, Scalar(0));Point point(filterSize.width / 2, filterSize.height / 2);circle(h, point, R, 255, -1, 8);Scalar summa = sum(h);outputImg = h / summa[0];
}

函数 calcWnrFilter()根据上述公式合成简化的 Wiener 过滤器(H_w):

void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
{Mat h_PSF_shifted;fftshift(input_h_PSF, h_PSF_shifted);Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI);split(complexI, planes);Mat denom;pow(abs(planes[0]), 2, denom);denom += nsr;divide(planes[0], denom, output_G);
}

函数 fftshift()重新排列 PSF。此代码刚刚从离散傅里叶变换教程中复制而来:

void fftshift(const Mat& inputImg, Mat& outputImg)
{outputImg = inputImg.clone();int cx = outputImg.cols / 2;int cy = outputImg.rows / 2;Mat q0(outputImg, Rect(0, 0, cx, cy));Mat q1(outputImg, Rect(cx, 0, cx, cy));Mat q2(outputImg, Rect(0, cy, cx, cy));Mat q3(outputImg, Rect(cx, cy, cx, cy));Mat tmp;q0.copyTo(tmp);q3.copyTo(q0);tmp.copyTo(q3);q1.copyTo(tmp);q2.copyTo(q1);tmp.copyTo(q2);
}

函数 filter2DFreq()过滤频域中的模糊图像:

void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI, DFT_SCALE);Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };Mat complexH;merge(planesH, 2, complexH);Mat complexIH;mulSpectrums(complexI, complexH, complexIH, 0);idft(complexIH, complexIH);split(complexIH, planes);outputImg = planes[0];
}

结果

下面你可以看到真实的失焦图像:

使用(R)= 53 和(SNR)= 5200 参数计算得出以下结果:

使用维纳滤波器,手动选择(R)和(SNR)的值,以提供最佳的视觉效果。我们可以看到结果并不完美,但它为我们提供了图像内容的提示。虽然有些困难,但文本是可读的。

注意

参数(R)是最重要的。所以你应该先调整(R),然后调整(SNR)。

有时,您可以在恢复的图像中观察到振铃效应。这种影响可以通过几种方法减少。例如,您可以逐渐缩小输入图像边缘。

参考文献:

1、《Out-of-focus Deblur Filter》---Karpushin Vladislav

这篇关于OpenCV4.9如何将失焦图片去模糊滤镜(67)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956758

相关文章

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪