OpenCV4.9如何将失焦图片去模糊滤镜(67)

2024-05-03 12:36

本文主要是介绍OpenCV4.9如何将失焦图片去模糊滤镜(67),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 返回:OpenCV系列文章目录(持续更新中......)
上一篇:OpenCV4.9的基于距离变换和分水岭算法的图像分割(66)
下一篇 :OpenCV4.9去运动模糊滤镜(68)

目标

在本教程中,您将学习:

  • 什么是退化图像模型
  • 失焦图像的 PSF 是多少
  • 如何恢复模糊的图像
  • 什么是维纳过滤器

理论

注意

该解释基于书籍[108]和[325]。另外,您可以参考 Matlab 的教程 Matlab 中的图像去模糊 和文章 SmartDeblur.

图像去模糊

图像的模糊或退化可能由许多因素引起:

  • 在图像捕获过程中,通过相机移动或长时间移动 曝光时间由受试者使用

  • 失焦光学元件、使用广角镜头、大气湍流或 曝光时间短,可减少捕获的光子数量

  • 共聚焦显微镜中的散射光畸变

模糊或退化的图像可以用以下方程 g = Hf + n 近似描述。

g

模糊的图像

H

失真算子,也称为点扩散 函数 (PSF)。在空间域中,PSF 描述光学系统模糊(扩散)的程度 光点。PSF 是 光传递函数 (OTF)。在频域中,OTF 描述了线性、位置不变系统对 冲动。OTF 是点差的傅里叶变换 函数 (PSF)。失真运算符,当与 图像,创建失真。点扩散引起的失真 功能只是失真的一种类型。

f

原始真实图像

注意

图像 f 并没有真正 存在。这张图片代表了如果你拥有的话,你会拥有什么 完美的图像采集条件。

n

图像采集过程中引入的加法噪声会损坏 图像

基于该模型,去模糊的基本任务是对模糊进行反卷积 具有准确描述失真的 PSF 的图像。反卷积是一个过程 逆转卷积的影响。

注意

去模糊图像的质量主要取决于对 PSF。

此页面上的失焦图像是真实世界的图像。失焦是通过相机光学器件手动实现的。

什么是退化图像模型?

以下是频域表示中图像退化的数学模型:

其中(S)是模糊(退化)图像的频谱,(U)是原始真实(未退化)图像的频谱,(H)是点扩散函数(PSF)的频率响应,(N)是加性噪声的频谱。

圆形 PSF 是离焦失真的一个很好的近似值。这样的 PSF 仅由一个参数指定 - 半径(R)。本工作使用圆形 PSF。

圆形点扩散功能

如何恢复模糊的图像?

恢复(去模糊)的目的是获得原始图像的估计值。频域中的恢复公式为:

其中(U)是原始图像(U)的估计光谱,(H_w)是恢复滤波器,例如维纳滤波器。

什么是维纳过滤器?

维纳滤镜是一种恢复模糊图像的方法。假设PSF是一个真实对称的信号,原始真实镜像和噪声的功率谱是未知的,那么一个简化的维纳公式是:

其中(SNR)是信噪比。

因此,为了通过维纳滤波器恢复失焦图像,它需要知道圆形PSF的(SNR)和(R)。

源代码

您可以在 OpenCV 源代码库中找到源代码。samples/cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp

#include <iostream>
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"using namespace cv;
using namespace std;void help();
void calcPSF(Mat& outputImg, Size filterSize, int R);
void fftshift(const Mat& inputImg, Mat& outputImg);
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H);
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr);const String keys =
"{help h usage ? | | print this message }"
"{image |original.jpg | input image name }"
"{R |5 | radius }"
"{SNR |100 | signal to noise ratio}"
;int main(int argc, char *argv[])
{help();CommandLineParser parser(argc, argv, keys);if (parser.has("help")){parser.printMessage();return 0;}int R = parser.get<int>("R");int snr = parser.get<int>("SNR");string strInFileName = parser.get<String>("image");samples::addSamplesDataSearchSubDirectory("doc/tutorials/imgproc/out_of_focus_deblur_filter/images");if (!parser.check()){parser.printErrors();return 0;}Mat imgIn;imgIn = imread(samples::findFile( strInFileName ), IMREAD_GRAYSCALE);if (imgIn.empty()) //check whether the image is loaded or not{cout << "ERROR : Image cannot be loaded..!!" << endl;return -1;}Mat imgOut;// it needs to process even image onlyRect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);//Hw calculation (start)Mat Hw, h;calcPSF(h, roi.size(), R);calcWnrFilter(h, Hw, 1.0 / double(snr));//Hw calculation (stop)// filtering (start)filter2DFreq(imgIn(roi), imgOut, Hw);// filtering (stop)imgOut.convertTo(imgOut, CV_8U);normalize(imgOut, imgOut, 0, 255, NORM_MINMAX);imshow("Original", imgIn);imshow("Debluring", imgOut);imwrite("result.jpg", imgOut);waitKey(0);return 0;
}void help()
{cout << "2018-07-12" << endl;cout << "DeBlur_v8" << endl;cout << "You will learn how to recover an out-of-focus image by Wiener filter" << endl;
}void calcPSF(Mat& outputImg, Size filterSize, int R)
{Mat h(filterSize, CV_32F, Scalar(0));Point point(filterSize.width / 2, filterSize.height / 2);circle(h, point, R, 255, -1, 8);Scalar summa = sum(h);outputImg = h / summa[0];
}void fftshift(const Mat& inputImg, Mat& outputImg)
{outputImg = inputImg.clone();int cx = outputImg.cols / 2;int cy = outputImg.rows / 2;Mat q0(outputImg, Rect(0, 0, cx, cy));Mat q1(outputImg, Rect(cx, 0, cx, cy));Mat q2(outputImg, Rect(0, cy, cx, cy));Mat q3(outputImg, Rect(cx, cy, cx, cy));Mat tmp;q0.copyTo(tmp);q3.copyTo(q0);tmp.copyTo(q3);q1.copyTo(tmp);q2.copyTo(q1);tmp.copyTo(q2);
}void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI, DFT_SCALE);Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };Mat complexH;merge(planesH, 2, complexH);Mat complexIH;mulSpectrums(complexI, complexH, complexIH, 0);idft(complexIH, complexIH);split(complexIH, planes);outputImg = planes[0];
}void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
{Mat h_PSF_shifted;fftshift(input_h_PSF, h_PSF_shifted);Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI);split(complexI, planes);Mat denom;pow(abs(planes[0]), 2, denom);denom += nsr;divide(planes[0], denom, output_G);
}

解释

失焦图像恢复算法包括 PSF 生成、Wiener 滤波器生成和频域模糊图像滤波:

 // it needs to process even image onlyRect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);//Hw calculation (start)Mat Hw, h;calcPSF(h, roi.size(), R);calcWnrFilter(h, Hw, 1.0 / double(snr));//Hw calculation (stop)// filtering (start)filter2DFreq(imgIn(roi), imgOut, Hw);// filtering (stop)

函数 calcPSF()根据输入参数半径(R)形成一个圆形 PSF:

void calcPSF(Mat& outputImg, Size filterSize, int R)
{Mat h(filterSize, CV_32F, Scalar(0));Point point(filterSize.width / 2, filterSize.height / 2);circle(h, point, R, 255, -1, 8);Scalar summa = sum(h);outputImg = h / summa[0];
}

函数 calcWnrFilter()根据上述公式合成简化的 Wiener 过滤器(H_w):

void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
{Mat h_PSF_shifted;fftshift(input_h_PSF, h_PSF_shifted);Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI);split(complexI, planes);Mat denom;pow(abs(planes[0]), 2, denom);denom += nsr;divide(planes[0], denom, output_G);
}

函数 fftshift()重新排列 PSF。此代码刚刚从离散傅里叶变换教程中复制而来:

void fftshift(const Mat& inputImg, Mat& outputImg)
{outputImg = inputImg.clone();int cx = outputImg.cols / 2;int cy = outputImg.rows / 2;Mat q0(outputImg, Rect(0, 0, cx, cy));Mat q1(outputImg, Rect(cx, 0, cx, cy));Mat q2(outputImg, Rect(0, cy, cx, cy));Mat q3(outputImg, Rect(cx, cy, cx, cy));Mat tmp;q0.copyTo(tmp);q3.copyTo(q0);tmp.copyTo(q3);q1.copyTo(tmp);q2.copyTo(q1);tmp.copyTo(q2);
}

函数 filter2DFreq()过滤频域中的模糊图像:

void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };Mat complexI;merge(planes, 2, complexI);dft(complexI, complexI, DFT_SCALE);Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };Mat complexH;merge(planesH, 2, complexH);Mat complexIH;mulSpectrums(complexI, complexH, complexIH, 0);idft(complexIH, complexIH);split(complexIH, planes);outputImg = planes[0];
}

结果

下面你可以看到真实的失焦图像:

使用(R)= 53 和(SNR)= 5200 参数计算得出以下结果:

使用维纳滤波器,手动选择(R)和(SNR)的值,以提供最佳的视觉效果。我们可以看到结果并不完美,但它为我们提供了图像内容的提示。虽然有些困难,但文本是可读的。

注意

参数(R)是最重要的。所以你应该先调整(R),然后调整(SNR)。

有时,您可以在恢复的图像中观察到振铃效应。这种影响可以通过几种方法减少。例如,您可以逐渐缩小输入图像边缘。

参考文献:

1、《Out-of-focus Deblur Filter》---Karpushin Vladislav

这篇关于OpenCV4.9如何将失焦图片去模糊滤镜(67)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956758

相关文章

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Android 10.0 mtk平板camera2横屏预览旋转90度横屏拍照图片旋转90度功能实现

1.前言 在10.0的系统rom定制化开发中,在进行一些平板等默认横屏的设备开发的过程中,需要在进入camera2的 时候,默认预览图像也是需要横屏显示的,在上一篇已经实现了横屏预览功能,然后发现横屏预览后,拍照保存的图片 依然是竖屏的,所以说同样需要将图片也保存为横屏图标了,所以就需要看下mtk的camera2的相关横屏保存图片功能, 如何实现实现横屏保存图片功能 如图所示: 2.mtk

Spring MVC 图片上传

引入需要的包 <dependency><groupId>commons-logging</groupId><artifactId>commons-logging</artifactId><version>1.1</version></dependency><dependency><groupId>commons-io</groupId><artifactId>commons-

Prompt - 将图片的表格转换成Markdown

Prompt - 将图片的表格转换成Markdown 0. 引言1. 提示词2. 原始版本 0. 引言 最近尝试将图片中的表格转换成Markdown格式,需要不断条件和优化提示词。记录一下调整好的提示词,以后在继续优化迭代。 1. 提示词 英文版本: You are an AI assistant tasked with extracting the content of

研究人员在RSA大会上演示利用恶意JPEG图片入侵企业内网

安全研究人员Marcus Murray在正在旧金山举行的RSA大会上公布了一种利用恶意JPEG图片入侵企业网络内部Windows服务器的新方法。  攻击流程及漏洞分析 最近,安全专家兼渗透测试员Marcus Murray发现了一种利用恶意JPEG图片来攻击Windows服务器的新方法,利用该方法还可以在目标网络中进行特权提升。几天前,在旧金山举行的RSA大会上,该Marcus现场展示了攻击流程,

恶意PNG:隐藏在图片中的“恶魔”

&lt;img src=&quot;https://i-blog.csdnimg.cn/blog_migrate/bffb187dc3546c6c5c6b8aa18b34b962.jpeg&quot; title=&quot;214201hhuuhubsuyuukbfy_meitu_1_meitu_2.jpg&quot;/&gt;&lt;/strong&gt;&lt;/span&gt;&lt;

PHP抓取网站图片脚本

方法一: <?phpheader("Content-type:image/jpeg"); class download_image{function read_url($str) { $file=fopen($str,"r");$result = ''; while(!feof($file)) { $result.=fgets($file,9999); } fclose($file); re

(入门篇)JavaScript 网页设计案例浅析-简单的交互式图片轮播

网页设计已经成为了每个前端开发者的必备技能,而 JavaScript 作为前端三大基础之一,更是为网页赋予了互动性和动态效果。本篇文章将通过一个简单的 JavaScript 案例,带你了解网页设计中的一些常见技巧和技术原理。今天就说一说一个常见的图片轮播效果。相信大家在各类电商网站、个人博客或者展示页面中,都看到过这种轮播图。它的核心功能是展示多张图片,并且用户可以通过点击按钮,左右切换图片。

matplotlib绘图中插入图片

在使用matplotlib下的pyplot绘图时,有时处于各种原因,需要采用类似贴图的方式,插入外部的图片,例如添加自己的logo,或者其他的图形水印等。 一开始,查找到的资料都是使用imshow,但是这会有带来几个问题,一个是图形的原点发生了变化,另外一个问题就是图形比例也产生了变化,当然最大的问题是图形占据了整个绘图区域,完全喧宾夺主了,与我们设想的只在绘图区域中占据很小的一块不相符。 经

react笔记 8-17 属性绑定 class绑定 引入图片 循环遍历

1、绑定属性 constructor(){super()this.state={name:"张三",title:'我是一个title'}}render() {return (<div><div>aaaaaaa{this.state.name}<div title={this.state.title}>我是一个title</div></div></div>)} 绑定属性直接使用花括号{}   注