FIFO Generate IP核使用——Data Counts页详解

2024-05-03 11:28

本文主要是介绍FIFO Generate IP核使用——Data Counts页详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Vivado IDE中,当看到一个用于设置数据计数选项的选项卡时,需要注意的是,尽管某些选项值可能因为当前的配置而显示为灰色(即不可选或已禁用),但IDE中显示的有效范围值实际上是你可以选择的真实值。即使某些值在视觉上被灰化,它们仍然是可用的,只要你的FIFO配置支持这些值。然而,通常灰化的值是因为它们在当前FIFO的特定配置下不适用或不推荐。

1 选择Native 接口采用Common时钟Standard模式时(Built-in除外)

此时,只需要配置Data Count的宽度。
在这里插入图片描述
数据计数的目的是输出用于显示FIFO中当前存储的数据字数量。其宽度可以是指定数据计数总线的宽度,最大宽度为log2(depth),其中depth是FIFO的深度(即最大可以存储的数据字数量)。如果指定的宽度小于最大允许宽度,那么总线的较低位将被截去。

假设FIFO的深度为8(即可以存储8个数据字),可以指定一个2位的数据计数总线,这2位将只能提供四种状态:00(FIFO为空)、01(FIFO包含1到2个数据字)、10(FIFO包含3到4个数据字)、11(FIFO包含5到8个数据字)。

注意:
如果在clk的上升沿发生读或写操作,数据计数端口(data_count)将在相同的clk上升沿更新。这意味着在每个时钟周期结束时检查data_count的值,以确定FIFO的当前状态。

2 选择Native 接口采用Independent时钟Standard模式时(Built-in除外)

此时,需要配置Write Data Width 和Read Data Count。
在这里插入图片描述
2.1 读数据计数(Read Data Count)

rd_data_count报告FIFO中可用于读取的数据字数量。它永远不会报告比实际可用的数据字更多的数量(尽管它可能会暂时报告更少的数量),以确保用户设计不会因读取过多数据而导致FIFO下溢。

宽度:可以指定读数据计数总线的宽度是最大宽度为log2(read depth),其中read depth是FIFO的读取深度(即最大可以读取的数据字数量)。如果指定的宽度小于最大允许宽度,那么总线的较低位将被截去。

注意:
如果在rd_clk/clk的上升沿发生读操作,这个读操作将在下一个rd_clk/clk的上升沿反映在rd_data_count信号上。
在wr_clk/clk时钟域上的写操作可能需要经过多个时钟周期才能在rd_data_count中反映出来,这取决于FIFO的实现和跨时钟域同步的机制。
因此,在设计跨时钟域FIFO时,需要特别注意读写数据计数的更新和同步问题,以确保数据的正确性和系统的稳定性。

2.2 Write Data Count(写数据计数)

wr_data_count报告已写入FIFO的数据字数量。它永远不会报告比实际已写入的数据字更少的数量(尽管它可能会暂时报告更多的数量),以确保你永远不会因写入过多数据而导致FIFO溢出。
宽度:可以指定写数据计数总线的宽度,最大宽度为log2(write depth),其中write depth是FIFO的写入深度(即最大可以写入的数据字数量)。如果指定的宽度小于最大允许宽度,那么总线的较低位将被截去。

注意:
如果在wr_clk/clk的上升沿发生写操作,这个写操作将在下一个wr_clk/clk的上升沿反映在wr_data_count信号上。
在rd_clk/clk时钟域上的读操作可能需要经过多个时钟周期才能在wr_data_count中反映出来,这取决于FIFO的实现和跨时钟域同步的机制。
因此,在设计跨时钟域FIFO时,需要特别注意读写数据计数的更新和同步问题,以确保数据的正确性和系统的稳定性。

3 选择Native 接口采用First-Word Fall-Through模式时

当采用该模式时,除了上述的数据计数、读数据计数和写数据计数意外,当采用common时钟时More Accurate Data Counts为默认必选项,如下图。
在这里插入图片描述
当选择Native 接口采用First-Word Fall-Through模式时,如果使用了Independent时钟,More Accurate Data Counts为可选项。
在这里插入图片描述
More Accurate Data Count(更精确的数据计数),目的是适应深度的增加并确保提供准确的数据计数。

当在Vivado IDE中选择“More Accurate Data Count ”选项时,wr_data_count(写入数据计数)、rd_data_count(读取数据计数)和data_count(数据计数)的宽度将分别增加,以容纳在First-Word Fall-Through情况下深度的增加。具体来说,它们的宽度分别为log2(write depth)+1、log2(read depth)+1和log2(depth)+1。

例如,对于一个深度为16的独立FIFO,具有对称的读写端口宽度,并选择了First-Word Fall-Through选项,实际的FIFO深度将从15增加到17(因为First-Word Fall-Through会占用一个额外的空间)。当使用准确的数据计数时,wr_data_count和rd_data_count的宽度将是5位,最大值为31(因为log2(17) = 4,但加1后变为5)。

当使用此选项时,不能使用wr_data_count、rd_data_count或data_count的任何一位来表示FIFO的状态,比如大约半满、四分之一满等。因为数据计数器的宽度增加了,直接使用传统的位表示方法(如最高位表示满或空)将不再准确。

对于上面的例子,如果想判断FIFO是否至少半满,你必须同时检查数据计数的最高位(MSB)和次高位(MSB-1)。这是因为数据计数器的范围从0(空)到31(对于5位计数器),而不是从0到16(对应于原始的FIFO深度)。因此,需要一个更复杂的条件来判断FIFO的状态。

这个选项允许更准确地跟踪FIFO中的元素数量,特别是在First-Word Fall-Through模式下,但它也引入了对FIFO状态判断的复杂性。因此,在使用此选项时,需要特别注意如何解释数据计数器的值。

2 选择Native 接口采用Built-in时钟

在选择Native接口时,如果使用了Built-in时钟,没有Data Counts选项页。

这篇关于FIFO Generate IP核使用——Data Counts页详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956630

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建