大数据_HBase_LSM-TREE 基本原理以及应用

2024-05-03 05:58

本文主要是介绍大数据_HBase_LSM-TREE 基本原理以及应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文章 : LSM-tree 基本原理及应用 - 简书

LSM-tree 在 NoSQL 系统里非常常见,基本已经成为必选方案了。今天介绍一下 LSM-tree 的主要思想,再举一个 LevelDB 的例子。

目录

LSM-tree

写入流程:

查询流程:

LevelDB

写入流程:

查询流程:

LSM-tree读写放大

写放大:

读放大:

总结


LSM-tree

   LSM-tree起源于 1996 年的一篇论文《The Log-Structured Merge-Tree (LSM-Tree)》,今天的内容和图片主要来源于 FAST'16 的《WiscKey: Separating Keys from Values in SSD-conscious Storage》。

   先看名字,log-structured,日志结构的,日志是软件系统打出来的,就跟人写日记一样,一页一页往下写,而且系统写日志不会写错,所以不需要更改,只需要在后边追加就好了。各种数据库的写前日志也是追加型的,因此日志结构的基本就指代追加。注意他还是个 “Merge-tree”,也就是“合并-树”,合并就是把多个合成一个。

   好,不扯淡了,说正文了。

   LSM-tree 是专门为 key-value 存储系统设计的,key-value 类型的存储系统最主要的就两个个功能,put(k,v):写入一个(k,v),get(k):给定一个 k 查找 v。

   LSM-tree 最大的特点就是写入速度快,主要利用了磁盘的顺序写,pk掉了需要随机写入的 B-tree。关于磁盘的顺序和随机写可以参考:《硬盘的各种概念》

 下图是 LSM-tree 的组成部分,是一个多层结构,就更一个树一样,上小下大。首先是内存的 C0 层,保存了所有最近写入的 (k,v),这个内存结构是有序的,并且可以随时原地更新,同时支持随时查询。剩下的 C1 到 Ck 层都在磁盘上,每一层都是一个在 key 上有序的结构。

LSM-tree

写入流程:

   一个 put(k,v) 操作来了,首先追加到写前日志(Write Ahead Log,也就是真正写入之前记录的日志)中,接下来加到 C0 层。当 C0 层的数据达到一定大小,就把 C0 层 和 C1 层合并,类似归并排序,这个过程就是Compaction(合并)。合并出来的新的 new-C1 会顺序写磁盘,替换掉原来的 old-C1。当 C1 层达到一定大小,会继续和下层合并。合并之后所有旧文件都可以删掉,留下新的。

注意数据的写入可能重复,新版本需要覆盖老版本。什么叫新版本,我先写(a=1),再写(a=233),233 就是新版本了。假如 a 老版本已经到 Ck 层了,这时候 C0 层来了个新版本,这个时候不会去管底下的文件有没有老版本,老版本的清理是在合并的时候做的。

写入过程基本只用到了内存结构,Compaction 可以后台异步完成,不阻塞写入。

查询流程:

   在写入流程中可以看到,最新的数据在 C0 层,最老的数据在 Ck 层,所以查询也是先查 C0 层,如果没有要查的 k,再查 C1,逐层查。

一次查询可能需要多次单点查询,稍微慢一些。所以 LSM-tree 主要针对的场景是写密集、少量查询的场景。

LSM-tree 被用在各种键值数据库中,如 LevelDB,RocksDB,还有分布式行式存储数据库 Cassandra 也用了 LSM-tree 的存储架构。

---------------------------------

LevelDB

其实光看上边这个模型还有点问题,比如将 C0 跟 C1 合并之后,新的写入怎么办?另外,每次都要将 C0 跟 C1 合并,这个后台整理也很麻烦啊。这里以 LevelDB 为例,看一下实际系统是怎么利用 LSM-tree 的思想的。

下边这个图是 LevelDB 的架构,首先,LSM-tree 被分成三种文件,第一种是内存中的两个 memtable,一个是正常的接收写入请求的 memtable,一个是不可修改的immutable memtable。

LevelDB

另外一部分是磁盘上的 SStable (Sorted String Table),有序字符串表,这个有序的字符串就是数据的 key。SStable 一共有七层(L0 到 L6)。下一层的总大小限制是上一层的 10 倍。

写入流程:

    首先将写入操作加到写前日志中,接下来把数据写到 memtable中,当 memtable 满了,就将这个 memtable 切换为不可更改的 immutable memtable,并新开一个 memtable 接收新的写入请求。而这个 immutable memtable 就可以刷磁盘了。这里刷磁盘是直接刷成 L0 层的 SSTable 文件,并不直接跟 L0 层的文件合并。

每一层的所有文件总大小是有限制的,每下一层大十倍。一旦某一层的总大小超过阈值了,就选择一个文件和下一层的文件合并。就像玩 2048 一样,每次能触发合并都会触发,这在 2048 里是最爽的,但是在系统里是挺麻烦的事,因为需要倒腾的数据多,但是也不是坏事,因为这样可以加速查询。

这里注意,所有下一层被影响到的文件都会参与 Compaction。合并之后,保证 L1 到 L6 层的每一层的数据都是在 key 上全局有序的。而 L0 层是可以有重叠的。

Compaction

上图是个例子,一个 immutable memtable 刷到 L0 层后,触发 L0 和 L1 的合并,假如黄色的文件是涉及本次合并的,合并后,L0 层的就被删掉了,L1 层的就更新了,L1 层还是全局有序的,三个文件的数据顺序是 abcdef。

虽然 L0 层的多个文件在同一层,但也是有先后关系的,后面的同个 key 的数据也会覆盖前面的。这里怎么区分呢?为每个key-value加个版本号。所以在 Compaction 时候应该只会留下最新的版本。

查询流程:

  先查memtable,再查 immutable memtable,然后查 L0 层的所有文件,最后一层一层往下查。

---------------------------------------

LSM-tree读写放大

    读写放大(read and write amplification)是 LSM-tree 的主要问题,这么定义的:读写放大 = 磁盘上实际读写的数据量 / 用户需要的数据量。注意是和磁盘交互的数据量才算,这份数据在内存里计算了多少次是不关心的。比如用户本来要写 1KB 数据,结果你在内存里计算了1个小时,最后往磁盘写了 10KB 的数据,写放大就是 10,读也类似。

写放大:

    我们以 RocksDB 的 Level Style Compaction 机制为例,这种合并机制每次拿上一层的所有文件和下一层合并,下一层大小是上一层的 r 倍。这样单次合并的写放大就是 r 倍,这里是 r 倍还是 r+1 倍跟具体实现有关,我们举个例子。

假如现在有三层,文件大小分别是:9,90,900,r=10。又写了个 1,这时候就会不断合并,1+9=10,10+90=100,100+900=1000。总共写了 10+100+1000。按理来说写放大应该为 1110/1,但是各种论文里不是这么说的,论文里说的是等号右边的比上加号左边的和,也就是10/1 + 100/10 + 1000/100 = 30 = r * level。个人感觉写放大是一个过程,用一个数字衡量不太准确,而且这也只是最坏情况。

读放大:

   为了查询一个 1KB 的数据。最坏需要读 L0 层的 8 个文件,再读 L1 到 L6 的每一个文件,一共 14 个文件。而每一个文件内部需要读 16KB 的索引,4KB的布隆过滤器,4KB的数据块(看不懂不重要,只要知道从一个SSTable里查一个key,需要读这么多东西就可以了)。一共 24*14/1=336倍。key-value 越小读放大越大。

总结

   关于 LSM-tree 的内容和 LevelDB 的设计思想就介绍完了,主要包括写前日志 WAL,memtable,SStable 三个部分。逐层合并,逐层查找。LSM-tree 的主要劣势是读写放大,关于读写放大可以通过一些其他策略去降低。



 

这篇关于大数据_HBase_LSM-TREE 基本原理以及应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/955979

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2