【小浩算法 BST与其验证】

2024-05-03 05:28
文章标签 算法 验证 bst 小浩

本文主要是介绍【小浩算法 BST与其验证】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

BST与其验证

  • 前言
  • 我的思路
    • 思路一 中序遍历+判断数组无重复递增
    • 思路二 递归+边界最大值最小值的传递
  • 我的代码
    • 测试用例1
    • 测试用例2

前言

BST是二叉树一个经典应用,我们常常将其用于数据的查找以及构建平衡二叉树等。今天我所做的题目是验证一颗二叉树是否为二叉搜索树,应该还算是基础题吧。

我的思路

其实最开始这个题目我的思路并不清晰,基本上只能想到去用递归,但是如何去构建递归的子问题,我想不太到,哈哈哈还是算法小白呢,想不到很正常(偷偷安慰自己…)。思路学习链接:
小浩算法-BST验证
力扣–验证二叉搜索树【98】

思路一 中序遍历+判断数组无重复递增

这个思路我觉得很巧妙,因为它利用了一个特性:二叉搜索树的中序遍历得到的一定是一个完全递增的序列(我们考虑的是二叉树里面无重复值),随后我们只需要判断一下遍历的结果是否严格递增就好了。总结一下:

  • 先中序遍历BST把结果存储在一个vector里面。
  • 判断该vector是否严格递增。
//验证是否为二叉搜索树void isBST(node* root) {//先创建一个数组vector<char> midOrderArr;midOrder(root, midOrderArr);//输出看一下我的数组里面存的是不是中序遍历的值for (int i = 0; i < midOrderArr.size(); i++) {cout << midOrderArr[i] << ' ';}cout << endl;for (int i = 0; i < midOrderArr.size()-1; i++) {if (midOrderArr[i] >= midOrderArr[i + 1]) {cout << "该二叉树 不是一颗二叉搜索树!" << endl;return;}}cout << "该二叉树 是一颗二叉搜索树!" << endl;}//二叉树的中序遍历void midOrder(node* root,vector<char>& Arr) {if (root == nullptr) {return;}midOrder(root->left, Arr);Arr.push_back(root->info);midOrder(root->right, Arr);}

思路二 递归+边界最大值最小值的传递

这个题目有一个很有意思的陷阱,那就是我们不光要求 一个结点的左孩子比它小,右孩子比它大。我们要求的是,这个结点的左子树上的所有结点都比它小,右子树上的所有结点都比他大

因此在递归的时候,我们需要一个上界和下界
首先需要考虑初始化的问题,这里我们用到climits库里面的LONG_MAX和LONG_MIN.代表long long 类型的最大值和最小值。
递归左子树,上界是根节点的值,下界就选上一层的min ;递归右子树,下界是根节点的值,上界就选上一层的max。perfect!完美!

bool isBST_Recursion(node* root,long long min,long long max) {if (root == nullptr) {return true;}if (root->info <= min || root->info >=max) {//cout << "该二叉树不是一个二叉搜索树";return false;}return isBST_Recursion(root->left, min, root->info) && isBST_Recursion(root->right, root->info, max);}

我的代码

测试用例1

1248##9##5##36##7##

在这里插入图片描述

测试用例2

421##3##65##7##

在这里插入图片描述

#include <iostream>
#include<algorithm>
#include<cmath>
#include <queue> 
#include<climits>
using namespace std;struct node {char info;node* left;node* right;node(char data) :info(data), left(nullptr), right(nullptr) {};node() :info(NULL), left(nullptr), right(nullptr) {};
};class binaryTree {
private:node* root;
public:binaryTree() {root = new node(NULL);}//得到树的根结点node* getRoot() {return root;}//以递归的方式构建一棵树void createTree(node*& t) {char str;cin >> str;if (str == '#') {t = NULL;}else {t = new node;//为t开辟空间t->info = str;createTree(t->left);createTree(t->right);}}//树的深度int depth(node* root) {if (root == nullptr) {return 0;}int left = depth(root->left);int right = depth(root->right);return max(left, right) + 1;}//打印一棵树满二叉树,只能打印满二叉树,节点数目最好不要超过10void print(node*& root) {//存放打印的二叉树char str[10][100] = {};queue<node*> q;int h = depth(root);q.push(root);int index = 0;while (!q.empty()) {int size = q.size();//存放每一层的节点vector<char> list;for (int i = 0; i < size; i++) {node* temp = q.front();q.pop();list.push_back(temp->info);//cout << temp->info;if (temp->left != nullptr) {q.push(temp->left);}if (temp->right != nullptr) {q.push(temp->right);}}bool flag = true;int j = 0;//打印前面部分空白while (j <= 2 * h - 1 - index) {str[index][j] = ' ';j++;}//保持第一行居中if (index == 0) {for (int m = 0; m < h - 2; m++) {str[index][j++] = ' ';}}for (int k = 0; k < list.size(); k++) {//如果是一层最后一个节点if (k == list.size() - 1) {str[index][j++] = list[k];}else {//相邻左右子节点if (k % 2 == 0) {str[index][j++] = list[k];for (int l = 0; l < 3 + 2 * (h - index / 2 - 1); l++) {str[index][j++] = ' ';}}else {str[index][j++] = list[k];str[index][j++] = ' ';}}}index += 2;//cout << endl;}for (int i = 0; i < 10; i++) {if (i % 2 == 1) {for (int j = 0; j < 100; j++) {str[i][j] = ' ';}}}for (int i = 0; i < 10; i++) {if (i % 2 == 0) {for (int j = 0; j < 100; j++) {if (str[i][j] - '0' >= 0 && str[i][j] - '0' <= 9 && i < 2 * h - 2) {str[i + 1][j - 1] = '/';str[i + 1][j + 1] = '\\';}}}}for (int i = 0; i < 10; i++) {for (int j = 0; j < 100; j++) {cout << str[i][j];}cout << endl;}}void DeepFirstSearch(node* root) {if (root == NULL) {return;}else {cout << root->info << ' ';DeepFirstSearch(root->left);DeepFirstSearch(root->right);}}void BreadthFirstSearch(node* root) {queue<node> myTree;if (root != nullptr) {myTree.push(*root);}while (!myTree.empty()) {cout << myTree.front().info << ' ';if (myTree.front().left != nullptr) {myTree.push(*(myTree.front().left));}if (myTree.front().right != nullptr) {myTree.push(*(myTree.front().right));}myTree.pop();}}//用于BFS递归的主函数void BFS_Recursion(node* root, int level, vector<vector<char>>& res) {if (root == nullptr) {return;}if (res.size() < level) {res.push_back(vector<char>());}res[level - 1].push_back(root->info);BFS_Recursion(root->left, level + 1, res);BFS_Recursion(root->right, level + 1, res);}void BreadthFirstSearch_recursion(node* root) {vector<vector<char>> res;BFS_Recursion(root, 1, res);for (int i = 0; i < res.size(); i++) {for (int j = 0; j < res[i].size(); j++) {cout << res[i][j] << " ";}}}//验证是否为二叉搜索树void isBST(node* root) {//先创建一个数组vector<char> midOrderArr;midOrder(root, midOrderArr);//输出看一下我的数组里面存的是不是中序遍历的值for (int i = 0; i < midOrderArr.size(); i++) {cout << midOrderArr[i] << ' ';}cout << endl;for (int i = 0; i < midOrderArr.size()-1; i++) {if (midOrderArr[i] >= midOrderArr[i + 1]) {cout << "该二叉树 不是一颗二叉搜索树!" << endl;return;}}cout << "该二叉树 是一颗二叉搜索树!" << endl;}//二叉树的中序遍历void midOrder(node* root,vector<char>& Arr) {if (root == nullptr) {return;}midOrder(root->left, Arr);Arr.push_back(root->info);midOrder(root->right, Arr);}bool isBST_Recursion(node* root,long long min,long long max) {if (root == nullptr) {return true;}if (root->info <= min || root->info >=max) {//cout << "该二叉树不是一个二叉搜索树";return false;}return isBST_Recursion(root->left, min, root->info) && isBST_Recursion(root->right, root->info, max);}};int main() {binaryTree T;node* root = T.getRoot();T.createTree(root);cout << "树的深度:" << T.depth(root) << endl;T.print(root);cout << "\n===========mid-order recursion===================="<<endl;T.isBST(root);cout << "\n===========upper and lower bounds recursion====================" << endl;if (T.isBST_Recursion(root, LONG_MIN, LONG_MAX)) {cout << "这是一颗二叉搜索树" << endl;}else {cout << "这不是一颗二叉搜索树" << endl;}/*cout << "\n===========DFS recursion====================" << endl;T.DeepFirstSearch(root);cout << "\n===========BFS QUEUE====================" << endl;T.BreadthFirstSearch(root);cout << "\n===========BFS recursion====================" << endl;T.BreadthFirstSearch_recursion(root);*/return 0;
}

这篇关于【小浩算法 BST与其验证】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/955917

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int