【高质量】2024五一数学建模C题保奖思路+代码(后续会更新)

本文主要是介绍【高质量】2024五一数学建模C题保奖思路+代码(后续会更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

你的点赞收藏是我后续更新的最大动力!

一定要点击文末的卡片,那是获取资料的入口!

你是否在寻找数学建模比赛的突破点?

作为经验丰富的数学建模团队,我们将为你带来2024 年五一数学建模(C题)的全面解析包。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,帮助你全面理解并掌握如何解决类似问题。

问题1:如图1,已知现场工作面的部分电磁辐射和声发射信号中存在大量干扰信号,有可能是工作面的其他作业或设备干扰等因素引起,这对后期的电磁辐射和声发射信号处理造成了一定的影响。应用附件1和2中的数据,完成以下问题。

(1.1) 建立数学模型,对存在干扰的电磁辐射和声发射信号进行分析,分别给出电磁辐射和声发射中的干扰信号数据的特征(不少于3个)。

(1.2) 利用问题(1.1)中得到的特征,建立数学模型,对2022年5月1日-2022年5月30日的电磁辐射和2022年4月1日-2022年5月30日及2022年10月10日-2022年11月10日声发射信号中的干扰信号所在的时间区间进行识别,分别给出电磁辐射和声发射最早发生的5个干扰信号所在的区间,完成表1和表2。

对于提出的数学建模问题,我们需要构建一个模型来分析受干扰的电磁辐射(EMR)和声发射(AE)信号,进而确定和记录特定时间段内的干扰信号。下面是针对问题1.1和1.2的详细分析和数学建模方法。

问题1.1 分析与建模思路

首先,需要从提供的数据中辨识出干扰信号的特征。根据问题描述和附加图表,干扰信号可能因其他操作或机械引起,这些干扰在信号中表现为异常波动或噪声。以下是构建模型的步骤:

特征识别

  1. 信号振幅突变:干扰通常导致信号振幅异常增高或降低。
  2. 频率变化:干扰可能引起信号的频率分布与正常工作时不同。
  3. 时间序列的非连续性:由于干扰的非周期性,信号的时间序列可能出现非连续性。

数学模型构建

可以使用统计学方法来分析和识别干扰特征: - 振幅分析:计算信号的平均振幅和标准差,通过比较实时数据与历史数据来识别异常。 Mean(X)=1n∑i=1nxi,SD(X)=1n∑i=1n(xi−Mean(X))2 \text{Mean}(X) = \frac{1}{n}\sum_{i=1}^{n}x_i, \quad \text{SD}(X) = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i - \text{Mean}(X))^2} - 频谱分析:利用快速傅里叶变换(FFT)分析信号频率组成,标识出频率的异常变化。 Xk=∑n=0N−1xne−2πiNkn,k=0,...,N−1 X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N} kn}, \quad k = 0, ..., N-1 - 时间序列分析:应用时间序列分析技术,如自回归模型(AR),来预测并检测信号的非连续性。 Xt=c+∑i=1pϕiXt−i+ϵt X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \epsilon_t - 信号振幅的平均值和标准差: 平均振幅平均振幅=1n∑i=1nxi \text{平均振幅} = \frac{1}{n} \sum_{i=1}^{n} x_i 标准差平均振幅标准差=1n∑i=1n(xi−平均振幅)2 \text{标准差} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \text{平均振幅})^2} - 快速傅里叶变换(FFT): X(k)=∑n=0N−1x(n)e−j2πNkn X(k) = \sum_{n=0}^{N-1} x(n) e^{-j \frac{2\pi}{N} kn} - 自回归模型(AR): Xt=c+∑i=1pϕiXt−i+ϵt X_t = c + \sum_{i=1}^{p} \phi_i X_{t-i} + \epsilon_t

首先,我们需要从提供的附件中读取并分析电磁辐射(EMR)和声发射(AE)信号数据。数据以CSV格式存储,包括时间戳和相应的信号强度值。数据预处理步骤包括清洗数据,去除噪声和异常值,填补缺失数据。

问题1.2 应用模型

特征提取

为了识别干扰信号,我们需要提取与干扰相关的特征。基于问题描述,可以关注以下几个方面的特征:

  • 信号振幅的异常变化:通过计算窗口内信号的平均振幅和标准差,识别出那些超过平均水平一定阈值的异常点。
  • 信号的频率成分变化:使用快速傅里叶变换(FFT)来分析信号在不同时间窗口内的频率成分,识别出与正常模式不符的频率变化。
  • 时间序列的突变点检测:通过时间序列分析,如自回归模型(AR)或其他统计检测方法,来检测信号中的突变点。

干扰信号的检测

基于上述特征,构建模型来检测干扰信号。这可以通过设置特定的逻辑条件来实现,例如,当信号的振幅超过平均振幅加上两倍标准差时,或者当信号的频率成分突然变化时,认为检测到干扰。

记录干扰时间段

根据检测到的干扰信号,记录下发生干扰的时间段。这些数据将被用来填充所要求的表格。

应用上述模型来分析2022年5月1日至5月30日记录的EMR数据,以及2022年4月1日至5月30日及2022年10月10日至11月10日记录的AE数据。

步骤

  1. 数据预处理:对EMR和AE数据进行清洗,剔除明显的错误或缺失数据。
  2. 特征应用:应用问题1.1中定义的数学模型和特征,对数据进行扫描,识别出干扰信号。
  3. 时间段标定:标定初次出现的五次干扰信号的时间段。
import numpy as np
import pandas as pd
from scipy.fft import fft# 假设data为载入的信号数据,包含时间戳和信号强度
def detect_interference(data):results = []window_size = 30  # 定义检测窗口大小threshold = 3     # 定义异常阈值for i in range(len(data) - window_size + 1):window = data[i:i+window_size]mean = np.mean(window['signal'])std = np.std(window['signal'])# 检测振幅异常if any(abs(signal - mean) > threshold * std for signal in window['signal']):start_time = window['time'].iloc[0]end_time = window['time'].iloc[-1]results.append((start_time, end_time))if len(results) == 5:breakreturn results# 示例数据加载与处理
emr_data = pd.read_csv('emr_data.csv')
ae_data = pd.read_csv('ae_data.csv')# 应用检测函数
emr_interferences = detect_interference(emr_data)
ae_interferences = detect_interference(ae_data)# 打印结果
print("EMR Interferences:", emr_interferences)
print("AE Interferences:", ae_interferences)
import pandas as pd
import numpy as np
from scipy.fft import fft
from statsmodels.tsa.ar_model import AutoReg
import matplotlib.pyplot as plt# 读取数据
emr_data = pd.read_csv('emr_data.csv')
ae_data = pd.read_csv('ae_data.csv')# 数据预处理
emr_data.dropna(inplace=True)
ae_data.dropna(inplace=True)# 特征提取函数
def extract_features(data):window_size = 50  # 设定分析窗口大小threshold = 3     # 异常阈值features = []for start in range(0, len(data) - window_size, window_size):window = data.iloc[start:start + window_size]mean = window['signal'].mean()std = window['signal'].std()# 检测异常振幅if any(abs(window['signal'] - mean) > mean + threshold * std):features.append((data.iloc[start]['timestamp'], data.iloc[start + window_size]['timestamp']))return features# 应用特征提取
emr_features = extract_features(emr_data)
ae_features = extract_features(ae_data)# 输出结果
print("EMR干扰时间段:", emr_features[:5])  # 只显示前5个结果
print("AE干扰时间段:", ae_features[:5])  # 只显示前5个结果

填充表格

我们将根据代码运行结果(完整代码可以和我交流得到)如下填充表格:

表1:EMR信号的时间间隔

NumberStart of Time IntervalEnd of Time Interval
1根据 emr_interferences[0][0]根据 emr_interferences[0][1]
2根据 emr_interferences[1][0]根据 emr_interferences[1][1]
3根据 emr_interferences[2][0]根据 emr_interferences[2][1]
4根据 emr_interferences[3][0]根据 emr_interferences[3][1]
5根据 emr_interferences[4][0]根据 emr_interferences[4][1]

表2:AE信号的时间间隔

NumberStart of Time IntervalEnd of Time Interval
1根据 ae_interferences[0][0]根据 ae_interferences[0][1]
2根据 ae_interferences[1][0]根据 ae_interferences[1][1]
3根据 ae_interferences[2][0]根据 ae_interferences[2][1]
4根据 ae_interferences[3][0]根据 ae_interferences[3][1]
5根据 ae_interferences[4][0]根据 ae_interferences[4][1]

其余题目正在抓紧编写!随时更新!

这篇关于【高质量】2024五一数学建模C题保奖思路+代码(后续会更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952756

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...

深入解析Spring TransactionTemplate 高级用法(示例代码)

《深入解析SpringTransactionTemplate高级用法(示例代码)》TransactionTemplate是Spring框架中一个强大的工具,它允许开发者以编程方式控制事务,通过... 目录1. TransactionTemplate 的核心概念2. 核心接口和类3. TransactionT