时序分析之setup/hold时钟path requirement解疑

2024-05-01 16:36

本文主要是介绍时序分析之setup/hold时钟path requirement解疑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、前言

二、时钟边沿选取

2.1 setup和hold

2.2 path requirement

2.3 同频率同相位

2.4 同频率不同相

2.5 倍频或分频关系

2.5 异步时钟

2.6 无公共周期


一、前言

    在时序报告中,任选一条时序分析结果查看路径详细延时,会看到在source path delay和destination path delay中,最前面的一段延时都是时钟边沿的延时,有时该值和时钟周期相同,有时不一样,该值是如何选取的呢?

同时,在summary中也可以看到Requirement,改值有时如何计算的呢,下面将针对这些就行解释

二、时钟边沿选取

2.1 setup和hold

    先来看看setup,在用户手册906中,setup是对两个时钟延时关系进行最悲观的边沿检查,对时钟的边沿检查默认是发起时钟和捕获时钟边沿间的最小的正delta

    在下面的内容开始前,先解释一个概念公共周期common period,假设时钟clk1周期为T1,时钟clk2周期为T2,则满足下列关系的最小正整数m,n,m*T1=n*T2,m*T1或n*T2的值即为公共周期

以时钟上升沿触发为例,启动时钟clk0的周期为6ns,第一个上升沿在0ns,下降沿在3ns,捕获时钟周期为4ns,第一个上升沿在0ns,下降沿在2ns。

在一个公共周期12ns内,存在两个setup检查,第一个setup(1)的delta值为4ns,第二个setup(2)的delta值为2ns,根据前面的定义选择最小的delta值,即2ns。因此时序分析时,启动时钟的边沿延时为6ns,捕获时钟为8ns

    再看hold的定义,hold检查是确保启动边沿发送数据后,不能够被前一个setup捕获沿捕获,因此要比前一个捕获沿迟到,也即下图hold检查为H1a,H2a。

另一种情况是在setup启动沿的数据无法被捕获沿捕获后,数据能被下一个有效启动时钟沿发送,也即下图hold检查中的H2a,H2b。

    同样的,hold分析也只分析最悲观的hold检查,根据上面的两种情况,可知最悲观的hold检查并不和最悲观的setup检查一一对应。时序分析工具会遍历公共周期内所有最悲观的setup检查对应的hold检查,选取最悲观的作为hold分析值,还是以setup分析的clk1和clk2为例,最大的hold要求时间为0ns,

hold计算

数据要求时间(hold)=捕获沿时间+目标时钟路径时延+时钟不确定度+hold值

数据到达时间(hold)=启动沿时间+源时钟路径时延+数据路径时延

slack(hold)=数据到达时间(hold)-数据要求时间(hold),因此,只由数据到达时间时延大于数据要求时间,slace值才为正值

2.2 path requirement

    在前言中也提到path requirement,path requirement中的即为公共周期内捕获时钟的有效沿时间减去启动时钟的有效沿,setup分析取最小值,hold分析取最大值。

源时钟clk1的rise延时

目的时钟clk2的rise延时

2.3 同频率同相位

假设启动时钟和捕获时钟是同一个时钟clk,周期为6ns,上升沿0ns,下降沿3ns,

则根据前面的分析可知道

Source和Destination中显示了clk1和clk2的波形信息,setup中Requirement为6ns,即启动沿边沿时延为0ns,捕获沿延时为6ns

hold分析中,因clk1和clk2的边沿是对齐的,故requirement为0

2.4 同频率不同相

场景1

假设启动时钟clk1和捕获时钟clk2都是周期为6ns,但上升沿时间clk1在1ns,clk2在0ns,占空比都为50%,此时公共周期仍为6ns。

报告结果如下,setup的requirement为5ns

此时clk1的上升沿rise为1ns,即符合预期

hold的requirement因上升沿非同一时刻,clk1右移了1ns,因此,Rise(clk2)-Rise(clk1)=-1ns

场景2

考虑在一个周期内,clk2的上升沿来的比clk1,如clk1的上升沿在3ns处,clk2的上升沿在1ns处,setup、hold分析如下图,可知此时红色setup的两个边沿已跨越了一个周期时间,绿色为hold的检查边沿

setup中requirement为4ns

hold中requirement的值为Rise(clk2)-Rise(clk1)=1ns-3ns=-2ns

2.5 倍频或分频关系

如由PLL输出的两个clkout0和clkout1分别是参考时钟clk1(周期为6ns的参考时钟)的2分频和2分频时钟,此时clkout0和clkout1仍为同步时钟,周期分别为12ns,18ns,因为相位关系是确定的。此时setup边沿有两条,根据最小值原则,应该要选取红色短线那条。

setup分析中requirement的值为12ns。

hold分析中因为上升沿对齐,仍为0

2.5 异步时钟

clk1周期为6ns,上升沿在0ns处,clk2周期为7ns,上升沿在2ns处,此时根据前面寻找公共周期的公式m*T1=n*T2,可知周期时长为42ns,两个时钟上升沿之差最小在clk1的36ns,clk2的37ns处,因此,setup下的requirement为1ns

hold的值类似,在30ns处二者的上升沿对齐,因为requirement为0

2.6 无公共周期

        在上述的时钟clk1,clk2在一个数量的周期内都能找到公共周期,当两个时钟在1000个周期内仍找不到公共周期,则称为不可扩展时钟(unexpandable),即无公共周期,这种情况需要确认路径是否合理,是否需要设置为异步路径,如下图中一个周期为1994ns,一个为1995ns,在1000个周期内无公共周期。

假设时钟clkout0和clkout1都有PLL的clkin1(周期为4ns)生成的,

module add(clk1,clk2,d,rst,clkin1,clkin2,sel,out );
input clk1,clk2,d,rst,clkin1,clkin2,sel;
output out;
reg ff1,ff2;
wire  ff_c;PLLE2_ADV #(.BANDWIDTH("OPTIMIZED"),  // OPTIMIZED, HIGH, LOW.CLKFBOUT_MULT(8),        // Multiply value for all CLKOUT, (2-64).CLKFBOUT_PHASE(0.0),     // Phase offset in degrees of CLKFB, (-360.000-360.000).// CLKIN_PERIOD: Input clock period in nS to ps resolution (i.e. 33.333 is 30 MHz)..CLKIN1_PERIOD(0.0),.CLKIN2_PERIOD(0.0),// CLKOUT0_DIVIDE - CLKOUT5_DIVIDE: Divide amount for CLKOUT (1-128).CLKOUT0_DIVIDE(1),.CLKOUT1_DIVIDE(2),.CLKOUT2_DIVIDE(4),.CLKOUT3_DIVIDE(5),.CLKOUT4_DIVIDE(1),.CLKOUT5_DIVIDE(1),// CLKOUT0_DUTY_CYCLE - CLKOUT5_DUTY_CYCLE: Duty cycle for CLKOUT outputs (0.001-0.999)..CLKOUT0_DUTY_CYCLE(0.4),.CLKOUT1_DUTY_CYCLE(0.5),.CLKOUT2_DUTY_CYCLE(0.5),.CLKOUT3_DUTY_CYCLE(0.5),.CLKOUT4_DUTY_CYCLE(0.5),.CLKOUT5_DUTY_CYCLE(0.5),// CLKOUT0_PHASE - CLKOUT5_PHASE: Phase offset for CLKOUT outputs (-360.000-360.000)..CLKOUT0_PHASE(0.0),.CLKOUT1_PHASE(0.0),.CLKOUT2_PHASE(0.0),.CLKOUT3_PHASE(0.0),.CLKOUT4_PHASE(0.0),.CLKOUT5_PHASE(0.0),.COMPENSATION("ZHOLD"),   // ZHOLD, BUF_IN, EXTERNAL, INTERNAL.DIVCLK_DIVIDE(1),        // Master division value (1-56)// REF_JITTER: Reference input jitter in UI (0.000-0.999)..REF_JITTER1(0.0),.REF_JITTER2(0.0),.STARTUP_WAIT("FALSE")    // Delay DONE until PLL Locks, ("TRUE"/"FALSE"))PLLE2_ADV_inst (// Clock Outputs: 1-bit (each) output: User configurable clock outputs.CLKOUT0(clkout0),   // 1-bit output: CLKOUT0.CLKOUT1(clkout1),   // 1-bit output: CLKOUT1.CLKOUT2(CLKOUT2),   // 1-bit output: CLKOUT2// Feedback Clocks: 1-bit (each) output: Clock feedback ports.CLKFBOUT(CLKFBOUT), // 1-bit output: Feedback clock// Clock Inputs: 1-bit (each) input: Clock inputs.CLKIN1(clkin1),     // 1-bit input: Primary clock.CLKIN2(clkin2),     // 1-bit input: Secondary clock// Control Ports: 1-bit (each) input: PLL control ports.CLKINSEL(sel), // 1-bit input: Clock select, High=CLKIN1 Low=CLKIN2.RST(rst),           // 1-bit input: Reset// Feedback Clocks: 1-bit (each) input: Clock feedback ports.CLKFBIN()    // 1-bit input: Feedback clock);// End of PLLE2_ADV_inst instantiationalways@(posedge clkout0,negedge rst)if(!rst)ff1<=1'b0;else beginff1<=d;end
assign ff_c=ff1;always@(posedge clkout1,negedge rst)if(!rst)ff2<=5'b0;else beginff2<=ff_c+1'b1;end
assign out=ff2;endmodule

约束情况1,clkout0周期为4ns,clkout1周期为6ns,存在公共周期

create_clock -period 4.000 -name clkin1 -waveform {0.000 2.000} [list [get_ports clk1] [get_ports clkin1]]
create_generated_clock -name clkout0 -source [get_ports clkin1] -edges {1 2 3} -edge_shift {0.000 0.000 0.000} -add -master_clock clkin1 [get_pins PLLE2_ADV_inst/CLKOUT0]
create_generated_clock -name clkout1 -source [get_ports clkin1] -edges {1 2 3} -edge_shift {0.000 0.000 2.000} -add -master_clock clkin1 [get_pins PLLE2_ADV_inst/CLKOUT1]

查看clock interaction可知关系为timed即属于同步时钟

约束情况2,对应的周期clkout0和clkout1分别为10.250ns,13.332ns,此时在1000个周期内无公共周期

create_clock -period 4.000 -name clkin1 -waveform {0.000 2.000} [list [get_ports clk1] [get_ports clkin1]]
create_generated_clock -name clkout0 -source [get_ports clkin1] -edges {1 2 3} -edge_shift {0.000 0.000 6.25} -add -master_clock clkin1 [get_pins PLLE2_ADV_inst/CLKOUT0]
create_generated_clock -name clkout1 -source [get_ports clkin1] -edges {1 2 3} -edge_shift {0.000 0.000 9.332} -add -master_clock clkin1 [get_pins PLLE2_ADV_inst/CLKOUT1]

在右下角的clock pair classification显示关系为no common clock,时钟关系也是Timed(unsafe)

此时的时序分析结果也是不可信的

这篇关于时序分析之setup/hold时钟path requirement解疑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952152

相关文章

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺