【Schrödinger薛定谔软件使用实战】- 4lyw蛋白实战

2024-05-01 15:20

本文主要是介绍【Schrödinger薛定谔软件使用实战】- 4lyw蛋白实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 软件选择
  • 1 pretein preparation
    • 1.1 import and process注意
      • 1.1.1 preprocess可能遇到的问题
    • 1.2 review and modify
    • 1.3 refine
      • 1.3.1 optimize优化氢键网络
      • 1.3.2 minimize 氢原子会进行能量最小化
  • 2 ligand prepare
  • 3 生成对接盒子-receptor grid generation
    • 3.1 receptor-确定受体
      • 3.1.1 define receptor
      • 3.1.2 van der waals radius scaling
    • 3.2 site 设置对接盒子大小
      • 3.2.1 advanced settings
    • 3.3 contraints-设置约束条件 (例如受体配体之间的氢键)
      • 3.3.1 positional/NOE(保持风格,要出现在特定范围内
      • 3.3.2 H-bond/Metal 黄线-氢键作用 或配体和金属原子相互作用(并不要求方向)
      • 3.3.3 Metal Coordination 金属配位作用-可以调节方向
    • 3.4 Rotatable Groups-规定哪些羟基等是可以旋转的
    • 3.5 Excluded Volumes
  • 4 ligand grid
    • 4.1 ligands选择已经准备好的配体
    • 4.2 setting
      • 4.2.1 设置对接准确度
      • 4.2.2 ligand sampling 配体选择采样
      • 4.2.3 选择采样偏向,三种选项
    • 4.3 contraints选择对3的限制条件的选择
    • 4.4 output 输出格式选择
  • 注意事项 PDB格式


软件选择

在这里插入图片描述
采用的是Maestro 12.8版本

1 pretein preparation

在这里插入图片描述

1.1 import and process注意

  • 1、有loop的时候,如果口袋在loop区域,pretein preparation一定要加上fill in loops
  • 2、准备蛋白时,注意对保守水分子的选择
  • 3、对于PH的选择,注意应当去质子还是被质子化
    !!!!!点击preprocess
    在这里插入图片描述

1.1.1 preprocess可能遇到的问题

  • alternates postitions:对于alternates postitions的残基选择,蛋白具有不同构象,注意选择,如果离得远,随便选,离得近就要认真考虑
  • overlapping atoms:对于氢原子会进行能量最小化的处理

1.2 review and modify

若小分子有很多带电状态,进行选择

1.3 refine

1.3.1 optimize优化氢键网络

选用默认选项,entry list增加hbond-opt
!!!!!点击optimize

1.3.2 minimize 氢原子会进行能量最小化

如果存在里的近的,橙黄线,尝试点击minimize消掉
!!!!!点击minimize
选用默认选项,entry list增加minimized
在这里插入图片描述

2 ligand prepare

import structure
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

设置筛选条件

  • -general attributes
    Molecular_weight 分子量 <=150 and >=500
    Num_chiral_centes 手性分子

  • -functional group counts
    Aldehydes 醛基数目》=1
    PH严重影响配体的质子化状态
    在这里插入图片描述
    在这里插入图片描述

  • 若对接有金属离子,则加上add metal binding states
    如果配体是2D结构computation选择第一个
    如果是3D选择第二个
    在这里插入图片描述

3 生成对接盒子-receptor grid generation

3.1 receptor-确定受体

在这里插入图片描述

3.1.1 define receptor

点击show markers 标注小分子,使其不会当作为受体的一部分
在这里插入图片描述

3.1.2 van der waals radius scaling

范德华半径的缩放–Glide:小分子是柔性的,受体是刚性的
对接分为刚性对接、柔性对接、半柔性对接

3.2 site 设置对接盒子大小

在这里插入图片描述

3.2.1 advanced settings

在这里插入图片描述
紫色盒子更大()
绿色盒子设置配体中心(对接时小分子中心点可以去到的位置)
若work_space只有受体,没有配体的话是没有办法通过点击配体来选择配体并生成紫色盒子,这样需要通过选择活性位点的氨基酸残基来定义对接盒子
在这里插入图片描述
在这里插入图片描述

通过select来选择氨基酸残基
在这里插入图片描述

3.3 contraints-设置约束条件 (例如受体配体之间的氢键)

来在早期去除掉不符合的配体模式
在这里插入图片描述

3.3.1 positional/NOE(保持风格,要出现在特定范围内

要求配体也在该区域有类似的组成,重视位置
在这里插入图片描述

NOE-针对氨基酸残基的距离,配体小分子出现在哪里等
在这里插入图片描述
在这里插入图片描述

3.3.2 H-bond/Metal 黄线-氢键作用 或配体和金属原子相互作用(并不要求方向)

在这里插入图片描述

配体羰基与天冬酰胺140有氢键作用
哪些氢键特别重要,则需要在H-bond/Metal中标出-选择天冬酰胺140的氢原子
在这里插入图片描述

gilde自动标注对称原子
点击use symmetry去除距离较远氢原子
在这里插入图片描述

3.3.3 Metal Coordination 金属配位作用-可以调节方向

3.4 Rotatable Groups-规定哪些羟基等是可以旋转的

在这里插入图片描述

pick groups -选择残基
在这里插入图片描述
选择酪氨酸,允许酪氨酸进行旋转
旋转在grid时是不可清除的

3.5 Excluded Volumes

在这里插入图片描述

排除口袋位置的小分子
在这里插入图片描述
对接时,任何小分子的原子不能出现在红色范围内
对接口袋规定内部里面的物理化学特性

4 ligand grid

选择ligand docking
在这里插入图片描述

display receptor
在这里插入图片描述

4.1 ligands选择已经准备好的配体

在这里插入图片描述

是否使用输入文件自带的局部电荷
在这里插入图片描述

默认不会对接分子量超过500 旋转超过100的,按需调整
在这里插入图片描述

调节配体的非极性范德华力的缩放
在这里插入图片描述

4.2 setting

在这里插入图片描述

4.2.1 设置对接准确度

  • precision
    HTVS 通量虚拟筛选,快速筛选小分子,更为严格,不可以score inplace(通常打分和对接是两个软件在做)
    XP 与SP类似,但对形状互补更严格,计算量更大,打分更严格
    建议:
    筛选大数据库时,先用sp,再按照打分排序,取前10%~30%,用xp重新对接,可以勾选
    在这里插入图片描述

若超大虚拟筛选,建议采用另一模块
在这里插入图片描述

4.2.2 ligand sampling 配体选择采样

在这里插入图片描述

选择配体柔性,允许inverse,并且考虑环采样

4.2.3 选择采样偏向,三种选项

在这里插入图片描述

第一个对资源文件的选择进行扭转偏斜
第二个是对酰胺的C和N的选择:1、惩罚非平面的构象(允许酰胺变形,非顺式等)2、保留酰胺键的输入原始构象3、只允许反式20°角的偏斜

4.3 contraints选择对3的限制条件的选择

4.4 output 输出格式选择

在这里插入图片描述

若想查看每个氨基酸基团对于构象的打分贡献的话可以勾选
在这里插入图片描述

若进行虚拟筛选很大时,点击run旁边齿轮,选择Do not incorporate
在这里插入图片描述
剩下的点击run即可

注意事项 PDB格式

Pdb
在这里插入图片描述

Hyperchem mm+力场中 -0.1294是电荷数
在这里插入图片描述

Gaussian z-矩阵,采用分子内坐标 键角 二面角
在这里插入图片描述

这篇关于【Schrödinger薛定谔软件使用实战】- 4lyw蛋白实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952008

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin