深度学习中的变形金刚——transformer

2024-05-01 05:44

本文主要是介绍深度学习中的变形金刚——transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很荣幸能和这些大牛共处一个时代。网络结构名字可以是一个卡通形象——变形金刚,论文名字可以来源于一首歌——披头士乐队的歌曲《All You Need Is Love》。

transformer在NeurIPS2017诞生,用于英语-德语,英语-法语的翻译,在BLEU(bilingual evaluation understudy)指标上得到了很好的表现。由自然语言生成代码也是一种翻译,文生图也是一种转换,事实上chatgpt,bert都是基于tranformer的。

RNN的问题:

为了将前文的信息传递到后面,让后面的字符利用前文信息,其实已经有RNN了:

问题是前面的信息,越往后权重会低,是一个指数衰减的过程。

还有一个问题是权重反复利用,也是指数的关系,这样权重的细微抖动,就会造成很大的差异。

LSTM解决了一些RNN的问题

长短期记忆网络LSTM,但这项技术只能按照顺序处理句子,无法有效利用文章后面可能出现的线索。

使用了三个门:输入门,忘记门,输出门,每一个门由一个信号和激活函数控制。

transformer

来看transformer的结构

RNN是处理语言的主流方法,但其信息处理速度缓慢,就像老式的磁带播放器,必须逐字逐句地播放。而Transformer模型则像是一位高效的DJ,能够同时操控多个音轨,迅速捕捉到关键信息。

我们由粗到细地看,首先可以看到结构分为左右两部分,分别是Encoder和Decoder。其中有两种主要的结构,橘黄色的Multi-head Attention和蓝色的Feed forward,每个结构会连接一个Add&Norm,表示残差和层归一化。左边Encoder是1*Attention+1*Feed,右边是2*Attention+1*Feed。

multi-head attention又是由多个Self-Attention组成的。多个Self-Attention得到多个输出矩阵,concat到一起,就是multi-head attention。

Self-Attention

Self-Attention就涉及到了著名的QKV三元素。

QKV也是三个矩阵,分别是查询,键值,值。他们都来源于Embedding,经过不同的权重矩阵得到。self-attention的结构和输出:

QKV的目的是在数据库中查询。特点是查询的query是数据库本身的一部分,目的是要得到query在整个句子中的分量。QK的部分实现的是不同Q之间的组合,组合的过程和顺序无关,主要是相关性。比如翻译中名词会有一些定语,这部分期望权重的绝对值应该比较大,而根据修饰的正面和负面,权重可以是正负,所以不同Q之间甚至是可以抵消的。

Q和V一起起到了信息搬运的效果,他俩合在一起才是真正的Q。从数学意义上讲,两个向量积是 相似度,所以QV得到了相似度mask矩阵。softmax则起到了归一化的作用。

而V,顾名思义就是value,是要查询的数据库。它也是由最原始的输入映射得到的。它直接决定了“苹果”是食物还是公司。

Embedding

self-attention的输入是Embedding,Embedding就是原始语料特征映射的结果。一般使用Word2Vec等词嵌入方法,所以也叫嵌入向量。不管是什么单词,嵌入后统一为长度512的向量。

但是这样的向量是没有位置信息的。“我爱你”和“你爱我”中的“我”映射的是相同的向量。位置信息完全隐藏在嵌入向量的相对顺序中。而如果后面有池化操作,位置信息就会完全丢失。

所以除了词嵌入,还需要位置嵌入,然后把二者加起来:

这就需要位置嵌入结果也是固定长度的,比如512,便于和词嵌入结果相加。

transformer使用的编码是基于正弦-余弦的:

本来一个数字pos就可以表明位置,但是为了达到规定的长度,构建了正余弦交替的基本向量,当编码长度是4时,那就是4个基向量,然后把pos分别代入4个基向量中:


可以看到,固定位置pos时,分量交替使用正弦余弦,两两一组,每一组使用相同的值。

为什么使用正余弦作基?

1. 更有利于表示相对位置。由三角函数的特性,一个位置加减一个偏移量,新的位置向量可以由原来的位置向量线性组合得到。

2.相比于直接把pos转换成二进制,即便长度正好满足,每个比特位的变化频率明显不同(高比特位的变化频率更低),而基于正余弦的方法明显各个分量的更新都是同步的。


参考链接:

​​​​​​​黄仁勋集齐Transformer论文七大作者,对话一小时,干货满满_凤凰网

【深度学习】RNN循环神经网络和LSTM深度学习模型_最新深度学习分类模型-CSDN博客

OpenAI公关跳起来捂他嘴:Transformer作者公开承认参与Q* |八位作者最新专访_澎湃号·湃客_澎湃新闻-The Paper
深度学习attention机制中的Q,K,V分别是从哪来的? - 知乎
http://jalammar.github.io/illustrated-transformer/

详解Transformer (Attention Is All You Need) - 知乎

Transformer系列:快速通俗理解Transformer的位置编码 - 简书

这篇关于深度学习中的变形金刚——transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950843

相关文章

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动