面试算法题:二叉树的平衡性检测

2024-04-30 22:32

本文主要是介绍面试算法题:二叉树的平衡性检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更详细的讲解和代码调试演示过程,请参看视频
如何进入google,算法面试技能全面提升指南

如果你对机器学习感兴趣,请参看一下链接:
机器学习:神经网络导论

二叉树由于其结构化清晰,并且变种多样,是面试中极为常见的考题。从本节开始,我们进入到有关二叉树面试题的研究中。

二叉树自身存在着一种递归结构,一个节点除了含有值外,还含有两个节点指针,这两个指针又分别指向两颗二叉树。二叉树有一个很重要的概念叫做树的高,它指的的是从某个节点开始,抵达某个叶子节点的最长路径。例如给定下面的二叉树:

这里写图片描述

如果从根节点6算起,二叉树的高度为4,因为它有4个层级,那么6的左子树,它的高度就为3,以此类推。

如果一颗二叉树是平衡的,必须满足每个节点,它左子树和右子树高度只差不超过1. 问题是,给定一颗二叉树的根节点,给出算法,判断该二叉树是否是一颗平衡二叉树。

如果一棵二叉树是空的,那么我们认为它的高度为0.
对于任意叶子节点,有就是节点的左右子树为空,那么它的高度为1.
对于非叶子节点,它的高度是先计算它的左右子树的高度,那么它本身的高度就是左右子树的最大高度加1.

由此,这道题的解决思路是计算每个节点左右子树的高度,如果两者高度只差大于1,那么它不是平衡的,如果每个节点左右子树的高度只差不超过1,那么他就是一棵平衡二叉树。

二叉树的高度可以递归来计算:
1. 如果输入的是空节点,那么返回高度值0
2. 如果输入的是叶子节点,那么返回高度1
3. 如果输入的是非叶子节点,那么分别计算左右子树的高度,选取其中最大者加1作为本节点的高度。

根据上面思路,我们实现的算法如下:


public class BalancedTree {private boolean balanced = true;public boolean isTreeBalanced(TreeNode node) {computeTreeHeight(node);return balanced;}private int computeTreeHeight(TreeNode node) {if (node == null) {return 0;}int leftHeight = computeTreeHeight(node.left);int rightHeight = computeTreeHeight(node.right);int height = leftHeight > rightHeight ? leftHeight : rightHeight;if (Math.abs(rightHeight - leftHeight) > 1) {balanced = false;}return height + 1;}
}

computeTreeHeight 接收的参数是一个二叉树的节点,然后分别计算该节点的左右子树高度,然后根据结果计算自身高度,在计算过程中,如果发现左右子树高度超过1,那么把balanced 设置成false, 如果该值设置成false的话,那么该二叉树就不是平衡的。

我们看看二叉树节点的定义和构造:


public class TreeNode {public int vaule;public TreeNode left;public TreeNode right;public TreeNode(int v) {this.vaule = v;this.left = this.right = null;}
}public class TreeUtil {private TreeNode root = null;public void addTreeNode(TreeNode node) {if (root == null) {root = node;return;}TreeNode cur = root, prev = root;while (cur != null) {prev = cur;if (cur.vaule > node.vaule) {cur = cur.left;} else {cur = cur.right;}}if (prev.vaule > node.vaule) {prev.left = node;} else {prev.right = node;}}public TreeNode getTreeRoot() {return root;}
}

TreeUtil用来构建一棵二叉树,它构建的是一棵排序二叉树,如果加入的节点比当前节点值小,那么把节点加入当前节点的左子树,如果加入节点的值比当前节点值大,那么把节点加入当前节点的右子树。我们再看看主函数入口处代码:

public class BinaryTree {public static void main(String[] s) {int[] arr = new int[]{6,4,9,2,5,7,10,1,3,8};TreeUtil util = new TreeUtil();for (int i = 0; i < arr.length; i++) {TreeNode n = new TreeNode(arr[i]);util.addTreeNode(n);}TreeNode root = util.getTreeRoot();BalancedTree bt = new BalancedTree();boolean isBalanced = bt.isTreeBalanced(root);System.out.println("If the binary tree is banlanced ? the answer is : " + isBalanced);
public class BinaryTree {public static void main(String[] s) {int[] arr = new int[]{6,4,9,2,5,7,10,1,3,8};TreeUtil util = new TreeUtil();for (int i = 0; i < arr.length; i++) {TreeNode n = new TreeNode(arr[i]);util.addTreeNode(n);}TreeNode root = util.getTreeRoot();BalancedTree bt = new BalancedTree();boolean isBalanced = bt.isTreeBalanced(root);System.out.println("If the binary tree is banlanced ? the answer is : " + isBalanced);util.addTreeNode(new TreeNode(11));util.addTreeNode(new TreeNode(12));util.addTreeNode(new TreeNode(13));root = util.getTreeRoot();isBalanced = bt.isTreeBalanced(root);System.out.println("If the binary tree is banlanced ? the answer is : " + isBalanced);}
}}
}

开始的for 循环利用TreeUtil构建了前面图像所示的二叉树,然后获得该二叉树的根节点,然后使用BalancedTree来检验该二叉树是否平衡,通过观察我们知道,该二叉树每个节点的左右子树高度不超过1,所以该二叉树是平衡的。

接下来,我们又给二叉树加入三个节点,节点值分别为11,12,13,于是二叉树如图所示:
这里写图片描述

此时我们可以看到,节点10的左子树是空,因此左子树的高度是0,右子树的高度是3,左右子树的高度相差超过了1,所以此时该二叉树是不平衡的。如果运行代码,可以发现,我们的代码能给出去正确的判断,因此代码对算法的实现是正确的。

该算法主要是递归的去计算每个节点的高度,在计算过程中,每个节点最多被访问1次,因此算法的复杂度是O(n),算法没有申请新内存因此算法的空间复杂度是O(1).

更详细的解释和代码演示,请参看视频。
更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

这篇关于面试算法题:二叉树的平衡性检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950083

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int