使用回调函数及tensorboard实现网络训练实时监控

2024-04-30 22:08

本文主要是介绍使用回调函数及tensorboard实现网络训练实时监控,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

神经网络开发的一大特点是, 一旦我们把大规模数据输入网络进行分析时,你的感觉就像抛出一只纸飞机,除了抛出那一刻你拥有控制力外,一旦离手,它怎么飞怎么飘就不再是你能控制得了。神经网络代码的运行就有这个特点,我们不能像平常程序那样设置断点,然后单步调试,一旦运行后,我们只能观察结果。令人郁闷的是,很多时候训练非常耗时,你跑完几个小时后突然发现代码中存在bug,于是你停下程序,修正后你又得等待好几个小时。

幸运的是,keras框架早就意识到这一点,它提供了相应机制能让我们随时监控网络的运行状况。通过前面章节我们看到,通常情况下我们不知道需要几个循环,网络才能达到最佳效果,我们往往让网络训练很多个循环,直到出现过度拟合时,我再观察训练过程数据,从中找到网络达到最佳状况所需的训练循环,然后我们重新设置循环次数后,再将网络重头跑一遍,这是非常耗时,效率低下的工作。

一个好的解决办法是提供一种监控机制,一旦发现网络对校验数据的判断准确率没有明显提升后就停止训练。keras提供了回调机制让我们随时监控网络的训练状况。当我们只需fit函数启动网络训练时,我们可以提供一个回调对象,网络每训练完一个流程后,它会回调我们提供的函数,在函数里我们可以访问网络所有参数从而知道网络当前运行状态,此时我们可以采取多种措施,例如终止训练流程,保存网络所有参数,加载新参数等,甚至我们能改变网络的运行状态。

keras提供的回调具体来说可以让我们完成几种操作,一种是存储网络当前所有参数;一种是停止训练流程;一种是调节与训练相关的某些参数,例如学习率,一种是输出网络状态信息,或者对网络内部状况进行视觉化输出,我们看一些代码例子:

import keras
callbacks_list = [#停止训练流程,一旦网络对校验数据的判断率不再提升,patience表示在两次循环间判断率没改进时就停止keras.callbacks.EarlyStopping(monitor='acc', patience=1),'''在每次训练循环结束时将当前参数存入文件my_model.h5,后两个参数表明当网络判断率没有提升时,不存储参数'''keras.callbacks.ModelCheckPoint(filepat='my_model.h5',monitor='val_loss',save_best_only=True),
'''如果网络对校验数据的判断率在10次训练循环内一直没有提升,下面回调将修改学习率'''keras.callbacks.ReduceLROnPlateau(monitor='val_loss',factor=0.1,patience=10,)
]model.compile(optimizer='rmsprop',loss='binary_crossentropy',metrics=['acc'])
'''
由于回调函数中会监控网络对校验数据判断的准确率,因此训练网络时必须传入校验数据
'''
model.fit(x, y, epochs = 10, callbacks = callbacks_list,validation_data = (x_val, y_val))

要想训练出一个精准的网络,一个重要前提是我们能时刻把握网络内部状态的变化情况,如果这些变化能够以视觉化的方式实时显示出来,那么我们就能方便的掌握网络内部的状态变化,keras框架附带的一个组件叫tensorboard能有效的帮我们实现这点,接下来我们构造一个网络,然后输入数据训练网络,然后激活tensorboard,通过可视化的方式看看网络在训练过程中的变化:

import keras;
from keras import layers
from keras.datasets import imdb
from keras.preprocessing import sequencemax_features = 2000
max_len = 500(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words = max_features)
x_train = sequence.pad_sequences(x_train, maxlen=max_len)
x_test = sequence.pad_sequence(x_test, maxlen = max_len)model = keras.models.Sequential()
model.add(layers.Embedding(max_features, 128, input_length = max_len,name = 'embed'))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer = 'rmsprop', loss = 'binary_crossentropy',metrics = ['acc'])

上面代码我们以前讲解过,这里的重点不再是理解它的逻辑,而是让它跑起来,然后我们使用tensorboard观察网络内在状态的变化,要使用tensorboard,我们需要创建一个目录用于存储它运行时生成的日志:

!mkdir my_log_dir

接着我们给网络注入一个回调钩子,让它在运行时把内部信息传递给tensorbaord组件:

callbacks = [keras.callbacks.TensorBoard(log_dir='my_log_dir',#每隔一个训练循环就用柱状图显示信息histogram_freq = 1,embeddings_freq = 1)
]history = model.fit(x_train, y_train,epochs = 20,batch_size = 128,validation_split = 0.2,callbacks = callbacks)

执行上面代码启动训练后,我们在控制台输入如下命令:

conda activate tensorflow
tensorboard --log_dir=my_log_dir

第一句命令用于激活安装了tensorflow的环境,第二句启动tensorbaord服务器。此时在浏览器里输入:http://localhost:6006就可以打开可视化环境,如下图:

屏幕快照 2019-01-08 下午4.44.36.png

点击histogram,我们可以看到网络内部状态变化以柱状图的方式展现出来:

屏幕快照 2019-01-08 下午4.46.20.png

更强大的是,它会把我们训练的单词向量以可视化的方式展现出来,点击Projector,你会看到如下三维动画:

屏幕快照 2019-01-08 下午4.49.10.png

它使用t-SNE可视化算法把高维向量转换到二维空间上进行展示。点击Graph按钮,它会把网络的模型图绘制出来,让你了解网络的层次结构:

屏幕快照 2019-01-08 下午4.52.27.png

有了回调函数和tensorboard组件的帮助,我们不用再将网络看做是一个无法窥探的黑盒子,通过tensorboard,我们可以在非常详实的视觉辅助下掌握网络的训练流程以及内部状态变化。

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

更多内容,请点击进入csdn学院

这篇关于使用回调函数及tensorboard实现网络训练实时监控的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950042

相关文章

springboot健康检查监控全过程

《springboot健康检查监控全过程》文章介绍了SpringBoot如何使用Actuator和Micrometer进行健康检查和监控,通过配置和自定义健康指示器,开发者可以实时监控应用组件的状态,... 目录1. 引言重要性2. 配置Spring Boot ActuatorSpring Boot Act

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也