深度学习进阶:使用keras开发非串行化神经网络

2024-04-30 22:08

本文主要是介绍深度学习进阶:使用keras开发非串行化神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们当前所开发的网络都遵循同一个模式,那就是串行化。多个网络层按照前后次序折叠起来,数据从底层输入,然后从最高层输出,其结构如下图:

1.png

事实上这种形式很不灵活,在很多应用场景中不实用。有些应用场景需要网络同时接收多种输入,有些应用场景要求网络能同时又多种输出,有些需要网络内部的网络层发送分叉,像一颗多叉树那样。有一些更复杂的网络结构是,它同时接收来自不同网络的输出,试想我们想要预测二手车在市场上的售价,此时网络可能要同时接收三种类型的信息,一种是对车辆的描述,例如车的品牌,类型,使用年限,公里数等;一种是用户评价产生的文本资料;一种是车辆的图片。于是我们就可能需要如下形式的网络结构:

2.png

还有一种情况是多类型预测。给定一本小说,我们需要预测这本小说所属类型,是言情类还是历史类,同时还需要预测小说的创作年代,于是网络的输出就必须要有两个以上的分支:

3.png

对于上面问题,我们可以构造两个网络去分别预测小说的类型和创造时间,但由于这两种数据高度相关,知道小说的创作时间很有利于对小说类型的预测,因此把他们整合在一个网络结构里分析显然更为合理。同时随着神经网络应用越来越广泛,应用场景对网络结构的要求也越来越多样化,有一类网络叫Inception network,它的特点是输入数据同时由多个网络层并行处理,然后得到多个处理结果,这些处理结果最后同时归并到同一个网络层,如下图:

4.png

谷歌开发的一种强大图像处理网络就属于上面的结构类型。所有原有的串行化结构无法适应很多复杂的应用场景,因此我们必须使用新的方法构建出类似上面的多样化神经网络,好在keras导出很多API,让我们方便的构建各种类型的深度网络,我们用具体代码来看看如何构造各种形态的网络,

from keras.models import Model
from keras import layers
from keras.utils import plot_model
from keras import Inputtext_vocabulary_size = 10000
question_vocabulary_size = 1000
answer_vocabulary_size = 500text_input = Input(shape=(None, ), dtype='int32', name = 'text')
embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input)
encoded_text = layers.LSTM(32)(embedded_text)question_input = Input(shape = (None, ), dtype='int32', name='question')
embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input)
encoded_question = layers.LSTM(16)(embedded_question)concatenated = layers.concatenate([encoded_text, encoded_question], axis = -1)
answer = layers.Dense(answer_vocabulary_size, activation='softmax')(concatenated)
model = Model([text_input, question_input], answer)
plot_model(model, to_file='model.png', show_shapes=True)

我们无需输入数据运行训练网络,我们只要把握上面网络的拓扑结构即可,上面代码的最后一句会把网络图像绘制出来,为了代码能正确运行,我们需要安装一个插件名为graphviz,通常情况下使用如下命令安装即可:

pip install graphviz

安装插件再运行上面代码后,网络的拓扑结构会绘制在model.png图形文件里,它的结构如下所示:

model.png

我们看到该网络并非我们常见的串行结构,最上层是两个并行分支,其输出的结果在网络层concatenate_19合并后再输入最后一层dens_13。这是一个多输入单输出的网络,当我们需要构建一个网络,它能读入数据并预测多种不同类型的数值时,这类网络就是单输入多输出的情况,一个具体例子如下:

vocabulary_size = 50000
num_income_groups = 10posts_input = Input(shape=(None, ), dtype = 'int32', name = 'posts')
embedded_posts = layers.Embedding(256, vocabulary_size)(posts_input)
x = layers.Conv1D(128, 5, activation='relu')(embedded_posts)
x = layers.MaxPooling1D(5)(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.MaxPooling1D(5)(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.Conv1D(256, 5, activation='relu')(x)
x = layers.GlobalMaxPooling1D()(x)
x = layers.Dense(128, activation='relu')(x)age_prediction = layers.Dense(1, name='age')(x)
income_prediction = layers.Dense(num_income_groups, activation='softmax', name='income')(x)
gender_prediction = layers.Dense(1, activation='sigmoid', name = 'gender')(x)
model = Model(posts_input, [age_prediction, income_prediction, gender_prediction])
model.compile(optimizer='rmsprop', loss=['mse', 'categorical_crossentropy', 'binary_crossentropy'], loss_weights = [0.25, 1. , 10.])
plot_model(model, to_file='model2.png', show_shapes=True)

上面代码构建的网络用语读入个人数据,然后预测该人的年龄,收入以及性别,代码运行后,我们得到网络的拓扑图如下:

model2.png

注意到当网络有多种输出时,我们必须对每种输出定义相应的损失函数,keras会把三种输出结果加总,然后使用梯度下降法修正整个网络的参数。但是这么做会产生一种情况,如果某个分支输出误差较大,那么网络调整参数时就会更多的去照顾这个分支,从而影响其他分支结果的准确性,处理这个问题的办法是为每个输出分支设定一个权重从而影响每个分支在参数调整是所产生的影响。

更多内容,请点击进入csdn学院

更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

这篇关于深度学习进阶:使用keras开发非串行化神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950040

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab