Deep-Fake原理揭示:使用WGAN-GP算法构造精致人脸

2024-04-30 21:58

本文主要是介绍Deep-Fake原理揭示:使用WGAN-GP算法构造精致人脸,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一节中可以看到基于”推土距离“的WGAN网络能够有效生成马图片,但是网络构造能力有所不足,因此导致有些图片模糊,甚至有些图片连马的轮廓都没有构建出来,本节我们改进WGAN网络,让它具有更强大的图像生成能力。

在介绍WGAN网络算法时提到,如果把网络看成一个函数,那么网络要想具备好的图像生成能力就必须满足1-Lipshitz条件,也就是要满足公式:

根据微积分的中值定理,如果函数f(x)可导,那么对任意x1,x2,可以找到位于(x1,x2)之间的x3,使得如下公式成了:

将它带入到上面公式就有:

这意味着如果函数满足1-Lipshitz条件,那么它必须在定义域内的没一点都可导,而且其求倒数后的结果绝对值不能大于1,这是一个相当苛刻的条件。所以上一节描述WGAN网络时,算法作者想不到好的办法让构造的网络满足这个条件,于是”拍脑袋“想出了将网络内部参数的数值全部剪切到(-1,1)之间,这也是造成网络生成图像质量不好的原因。

如果把函数f看做鉴别者网络,把输入的参数x看做是输入网络的图片,那么需要网络对所有输入图片求导后,所得结果求模后不大于1.这里需要进一步解释的是,由于图片含有多个像素点,如果把每一个像素点的值都看成是输入网络的参数,那么网络就是一个多元函数f(x1,x2,….xn),其中x1,x2…xn就是输入图片的像素值,对其求导就是分别针对x1,x2…xn求导,如果使用f1对应与针对x1求导后的结果,那么对所有x1,x2…xn求导后就会得到一个向量(f1,f2….fn),将该向量求模就对应第二个公式中的|f’(xn)|。

问题在于算法要求对所有输入图片都要满足求模后结果不大于1的要求,这点我们无法做到,因为我们不可能拿所有图像输入到网络。例如要让网络生成人脸,我们也不可能拿所有人脸图像来训练网络,因此就要做折中或妥协,我们拿一张真的人脸图像,然后用构造者网络生成一张假的人脸图像,在这两个人脸图像之间取一点,然后让网络对该点求导后结果的绝对值不大于1即可,算法流程如下图所示:

由于WGAN-GP算法相对于上一节的WGAN算法,只是针对鉴别者网络的训练过程做了修改,其他都没变,因此这里只给出WGAN-GP的鉴别者网络训练代码:

def train_discriminator(self, image_batch):'''训练鉴别师网络,它的训练分两步骤,首先是输入正确图片,让网络有识别正确图片的能力。然后使用生成者网络构造图片,并告知鉴别师网络图片为假,让网络具有识别生成者网络伪造图片的能力'''with tf.GradientTape(persistent=True, watch_accessed_variables=False) as tape: #只修改鉴别者网络的内部参数tape.watch(self.discriminator.trainable_variables)noise = tf.random.normal([len(image_batch), self.z_dim])true_logits = self.discriminator(image_batch, training = True)gen_imgs = self.generator(noise, training = True) #让生成者网络根据关键向量生成图片fake_logits = self.discriminator(gen_imgs, training = True)d_loss_real = tf.multiply(tf.ones_like(true_logits), true_logits)#根据推土距离将真图片的标签设置为1d_loss_fake = tf.multiply(-tf.ones_like(fake_logits), fake_logits)#将伪造图片的标签设置为-1with tf.GradientTape(watch_accessed_variables=False) as iterploted_tape:#注意此处是与WGAn的主要差异t = tf.random.uniform(shape = (len(image_batch), 1, 1, 1)) #生成[0,1]区间的随机数interploted_imgs = tf.add(tf.multiply(1 - t, image_batch), tf.multiply(t, gen_imgs)) #获得真实图片与虚假图片中间的差值iterploted_tape.watch(interploted_imgs)interploted_loss = self.discriminator(interploted_imgs)interploted_imgs_grads = iterploted_tape.gradient(interploted_loss, interploted_imgs)#针对差值求导grad_norms = tf.norm(interploted_imgs_grads)penalty = 10 * tf.reduce_mean((grad_norms - 1) ** 2)#确保差值求导所得的模不超过1d_loss = d_loss_real + d_loss_fake + penalty #penalty 对应WGAN-GP中的GPgrads = tape.gradient(d_loss , self.discriminator.trainable_variables)self.discriminator_optimizer.apply_gradients(zip(grads, self.discriminator.trainable_variables)) #改进鉴别者网络内部参数self.d_loss.append(d_loss)self.d_loss_real.append(d_loss_real)self.d_loss_fake.append(d_loss_fake)

这里要注意代码中实现在真假图片中间取数值点,然后让其倒数求模不超过1的实现,也就是interploted_imgs_grads的计算过程,这一小片代码决定了网络最终生成图像的质量,使用WGA-GP算法训练网络后,最终生成的人脸图像如下:

可以看到网络生成的人脸图像非常细腻生动,虽然有些人脸图像不够清楚,但绝大多数人脸图像,例如第一行第一章人脸图像,你很难想象它是由神经网络生成的虚拟人脸图像,因为它太逼真了。前段时间流行的deep fake,其原理差不多,只是在实现的技术层面做了更多的优化和处理。

更多精彩内容请点击’阅读原文‘链接

这篇关于Deep-Fake原理揭示:使用WGAN-GP算法构造精致人脸的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950028

相关文章

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Java中的Cursor使用详解

《Java中的Cursor使用详解》本文介绍了Java中的Cursor接口及其在大数据集处理中的优势,包括逐行读取、分页处理、流控制、动态改变查询、并发控制和减少网络流量等,感兴趣的朋友一起看看吧... 最近看代码,有一段代码涉及到Cursor,感觉写法挺有意思的。注意是Cursor,而不是Consumer

Node.js net模块的使用示例

《Node.jsnet模块的使用示例》本文主要介绍了Node.jsnet模块的使用示例,net模块支持TCP通信,处理TCP连接和数据传输,具有一定的参考价值,感兴趣的可以了解一下... 目录简介引入 net 模块核心概念TCP (传输控制协议)Socket服务器TCP 服务器创建基本服务器服务器配置选项服

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c