在Ignite中使用k-最近邻(k-NN)分类算法

2024-04-30 12:58

本文主要是介绍在Ignite中使用k-最近邻(k-NN)分类算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类。该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成员的关系。

一个适合k-NN分类的数据集是鸢尾花数据集,它可以很容易地通过UCI网站获得。

鸢尾花数据集由150个样本组成,来自3种不同种类的鸢尾花各有50朵(Iris Setosa, Iris Versicolour和Iris Virginica)。以下四个特征可供每个样本使用:

  • 萼片长度(cm)
  • 萼片宽度(cm)
  • 花瓣长度(cm)
  • 花瓣宽度(cm)

下面会创建一个模型,利用这四个特征区分不同的物种。

首先,要获取原始数据并将其拆分成训练数据(60%)和测试数据(40%)。然后再次使用Scikit-learn来执行这个任务,下面修改一下前一篇文章中使用的代码,如下:

from sklearn import datasets
import pandas as pd# Load Iris dataset.
iris_dataset = datasets.load_iris()
x = iris_dataset.data
y = iris_dataset.target# Split it into train and test subsets.
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=23)# Save train set.
train_ds = pd.DataFrame(x_train, columns=iris_dataset.feature_names)
train_ds["TARGET"] = y_train
train_ds.to_csv("iris-train.csv", index=False, header=None)# Save test set.
test_ds = pd.DataFrame(x_test, columns=iris_dataset.feature_names)
test_ds["TARGET"] = y_test
test_ds.to_csv("iris-test.csv", index=False, header=None)

当训练和测试数据准备好之后,就可以写应用了,本文的算法是:

  1. 读取训练数据和测试数据;
  2. 在Ignite中保存训练数据和测试数据;
  3. 使用训练数据拟合k-NN模型;
  4. 将模型应用于测试数据;
  5. 确定模型的准确性。

读取训练数据和测试数据

需要读取两个有5列的CSV文件,一个是训练数据,一个是测试数据,5列分别为:

  1. 萼片长度(cm)
  2. 萼片宽度(cm)
  3. 花瓣长度(cm)
  4. 花瓣宽度(cm)
  5. 花的种类(0:Iris Setosa,1:Iris Versicolour,2:Iris Virginica)

通过下面的代码,可以从CSV文件中读取数据:

private static void loadData(String fileName, IgniteCache<Integer, IrisObservation> cache)throws FileNotFoundException {Scanner scanner = new Scanner(new File(fileName));int cnt = 0;while (scanner.hasNextLine()) {String row = scanner.nextLine();String[] cells = row.split(",");double[] features = new double[cells.length - 1];for (int i = 0; i < cells.length - 1; i++)features[i] = Double.valueOf(cells[i]);double flowerClass = Double.valueOf(cells[cells.length - 1]);cache.put(cnt++, new IrisObservation(features, flowerClass));}
}

该代码简单地一行行的读取数据,然后对于每一行,使用CSV的分隔符拆分出字段,每个字段之后将转换成double类型并且存入Ignite。

将训练数据和测试数据存入Ignite

前面的代码将数据存入Ignite,要使用这个代码,首先要创建Ignite存储,如下:

IgniteCache<Integer, IrisObservation> trainData = getCache(ignite, "IRIS_TRAIN");
IgniteCache<Integer, IrisObservation> testData = getCache(ignite, "IRIS_TEST");
loadData("src/main/resources/iris-train.csv", trainData);
loadData("src/main/resources/iris-test.csv", testData);

getCache()的实现如下:

private static IgniteCache<Integer, IrisObservation> getCache(Ignite ignite, String cacheName) {CacheConfiguration<Integer, IrisObservation> cacheConfiguration = new CacheConfiguration<>();cacheConfiguration.setName(cacheName);cacheConfiguration.setAffinity(new RendezvousAffinityFunction(false, 10));IgniteCache<Integer, IrisObservation> cache = ignite.createCache(cacheConfiguration);return cache;
}

使用训练数据拟合k-NN分类模型

数据存储之后,可以像下面这样创建训练器:

KNNClassificationTrainer trainer = new KNNClassificationTrainer();

然后拟合训练数据,如下:

KNNClassificationModel mdl = trainer.fit(ignite,trainData,(k, v) -> v.getFeatures(),     
// Feature extractor.(k, v) -> v.getFlowerClass())  
// Label extractor..withK(3).withDistanceMeasure(new EuclideanDistance()).withStrategy(KNNStrategy.WEIGHTED);

Ignite将数据保存为键-值(K-V)格式,因此上面的代码使用了值部分,目标值是Flower类,特征在其它列中。将k的值设为3,代表3种。对于距离测量,可以有几个选择,如欧几里德、汉明或曼哈顿,在本例中使用欧几里德。最后要指定是使用SIMPLE算法还是使用WEIGHTED k-NN算法,在本例中使用WEIGHTED。

将模型应用于测试数据

下一步,就可以用训练好的分类模型测试测试数据了,可以这样做:

int amountOfErrors = 0;
int totalAmount = 0;try (QueryCursor<Cache.Entry<Integer, IrisObservation>> cursor = testData.query(new ScanQuery<>())) {for (Cache.Entry<Integer, IrisObservation> testEntry : cursor) {IrisObservation observation = testEntry.getValue();double groundTruth = observation.getFlowerClass();double prediction = mdl.apply(new DenseLocalOnHeapVector(observation.getFeatures()));totalAmount++;if (groundTruth != prediction)amountOfErrors++;System.out.printf(">>> | %.0f\t\t\t | %.0f\t\t\t|\n", prediction, groundTruth);}System.out.println(">>> -----------------------------");System.out.println("\n>>> Absolute amount of errors " + amountOfErrors);System.out.printf("\n>>> Accuracy %.2f\n", (1 - amountOfErrors / (double) totalAmount));
}

确定模型的准确性

下面,就可以通过对测试数据中的真实分类和模型进行的分类进行对比,来确认模型的真确性。

代码运行之后,总结如下:

>>> Absolute amount of errors 2
>>> Accuracy 0.97

因此,Ignite能够将97%的测试数据正确地分类为3个不同的种类。

总结

Apache Ignite提供了一个机器学习算法库。通过k-NN分类示例,可以看到创建模型、测试模型和确定准确性的简单性。

在机器学习系列的下一篇中,将研究另一种机器学习算法

这篇关于在Ignite中使用k-最近邻(k-NN)分类算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948931

相关文章

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当