AI小白使用Macbook Pro安装llama3与langchain初体验

2024-04-30 09:28

本文主要是介绍AI小白使用Macbook Pro安装llama3与langchain初体验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 背景

AI爆火了2年有余,但我仍是一个AI小白,最近零星在学,随手记录点内容供自己复习。

上次在Macbook Pro上安装了Stable Diffusion,体验了本地所心所欲地生成各种心仪的图片,完全没有任何限制的惬意。今天想使用Macbook Pro安装一个本地大语言模型体验一下,刚好在2024年4月18日,Meta在官网上宣布公布了旗下最新大模型Llama 3,并开放了80亿(8B)和700亿(70B)两个小参数版本,据说能力显著提升。遂开干。

  • 为什么部署本地大模型
    • 学习方便,私有材料不用发给外网,可以为公司私有化部署积累经验。
    • 省钱,不需要单独买云主机,电脑放家里闲着也是闲着。

  • 为什么选择llama3
    • 最新款。科技这东西,用新不用旧。
    • Meta出品,大厂品质有保证。

  • 这是本次用到的技术框架

2. 环境

硬件

型号:macbook pro 14寸

CPU:M2 MAX (12+38)

内存:96G

硬盘:8T

操作系统:maxOS 14.3.1

软件:

python 3.11

conda 24.3.0

llama3 8B 和 70B

此外还需要一些额外的特别网络软件,否则可能无法下载。如果想买个便宜的云主机自己部署这类软件,可私信我拿教程。

3. 安装llama3

登录官网:GitHub - ollama/ollama: Get up and running with Llama 3, Mistral, Gemma, and other large language models.

下载安装包:https://ollama.com/download/Ollama-darwin.zip

解压后运行:Ollama,初始化环境。

先体验8B模型,在命令行窗口运行(第一次运行会下载并安装模型):

ollama run llama3

安装完成后,输出提示“end a message (/? for help),可以随便输入信息。

对中文支持还不错。

4. 使用langchain完成简单的RAG

上面对广州的介绍输出非常简单,如果想使用自己语料库来完成,比如公司内部有自己的知识库,需要结合公司的知识库来回答问题,那就可以试试langchain。

简单地说,langchain 是一个帮助在应用程序中使用大型语言模型(LLM)的编程框架,可极大简化对LLM的调用。

详细介绍可参考官方文档:Introduction | 🦜️🔗 LangChain。

快速开始:Quickstart | 🦜️🔗 LangChain。

安装:

conda install langchain -c conda-forge

报错:“Verifying transaction: / WARNING conda.core.path_actions:verify(1055): Unable to create environments file. Path not writable.”

说明没有写权限,把对应文件owner修改为当前登录用户:

sudo chown -R $USER ~/.conda

为了方便,使用PyCharm来写测试文件。

上面使用conda安装langchain的环境,所以新建项目的环境选择“Select existing”,再选择conda。

写一个python文件测试:

from langchain_community.llms import Ollamallm = Ollama(model="llama3")
response = llm.invoke("使用中文介绍一下广州")
print(response)

报错,提示要安装llama2,根据提示修改文件“/opt/homebrew/anaconda3/lib/python3.11/site-packages/langchain_community/embeddings/ollama.py”,使用llama3替换:

#model: str = "llama2"
model: str = "llama3"

再次报错,提示要安装faiss,使用命令行安装:

pip install faiss-cpu

终于跑成功,输出如下:

换成百度百科的语料,python文件如下:

from langchain_community.llms import Ollama
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain#加载文件
loader = WebBaseLoader("https://baike.baidu.com/item/%E5%B9%BF%E5%B7%9E%E5%B8%82/21808?fromtitle=%E5%B9%BF%E5%B7%9E&fromid=72101&fr=aladdin")
page_context = loader.load()
#分词
text_splitter = RecursiveCharacterTextSplitter()
split_documents = text_splitter.split_documents(page_context)embeddings = OllamaEmbeddings()#保存到向量库
vector = FAISS.from_documents(split_documents, embeddings)
retriever = vector.as_retriever()#提示词模板
prompt = ChatPromptTemplate.from_template("""Answer question based on the provided context:
<context>{context}</context>
Question: {input}""")#加载模型
llm = Ollama(model="llama3")
document_chain = create_stuff_documents_chain(llm, prompt)retrieval_chain = create_retrieval_chain(retriever, document_chain)
response = retrieval_chain.invoke({"input": "使用中文介绍广州"})
print(response["answer"])

输出如下,可以看出输出的内容部分使用了百度百科最新的数据:

如果把提示词修改一下:“Answer question only based on the provided context”,就是里面加上限定词“only”,输出就只有百度百科的内容,如下:

5. 测试llama3 70b

如果内存足够大,可以选择安装70b模型。70b与8b的区别我现在只知道参数一个多一个少,对硬件要求不同,具体能力区别,还得后面去学习验证。

安装:

ollama run llama3:70b

70b模型安装文件达到了39G多,而8b模型文件是4.7G。

安装完成后,使用命令行测试,输出:

70b模型通过langchain无专属语料输出:

通过对比,在不使用专属语料库的情况下,70b模型比8b模型输出内容更为丰富

70b模型通过langchain使用专属语料输出:

通过对比,使用专属语料库的情况下,70b模型和8b模型输出内容看不出明显差异。

6. 机器消耗

跑问题时,CPU基本空转,内存跑到64G,GPU打满,风扇呼呼响。

不跑问题时,内存在27G,GPU和CPU负载都很低,风扇不转。

7. 小结

Macbook pro 跑大模型在网上经常被人笑话,不过自己安装玩一玩,学一学,还是不错的,反正我自己用得挺好的。有空的时候再去云平台搞台N卡的机器试试,看到有些云主机平台还有免费试用3个月的带显卡的AI专用虚机供申请,过几天去薅羊毛看看效果。

这也是我第一次写python,果然比java方便。

最后,支付公司都有各种各样的技术文档,可以私有化部署LLM,再结合RAG,私有文档库,做成专有的专家知识库,不仅可以用于外部客户答疑,内部同学值班处理线上问题也是非常方便的。

这篇关于AI小白使用Macbook Pro安装llama3与langchain初体验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948494

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没