【数据分析面试】34.填充NaN值 (Python:groupby/sort_value/ffill)

2024-04-29 18:44

本文主要是介绍【数据分析面试】34.填充NaN值 (Python:groupby/sort_value/ffill),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

题目:填充NaN值 (Python)

给定一个包含三列的DataFrame:client_id、ranking、value

编写一个函数,将value列中的NaN值用相同client_id的前一个非NaN值填充,按升序排列。

如果不存在前一个client_id,则返回前一个值。

输入:

print(clients_df)
client_idrankingvalue
100111000
10012NaN
100131200
100211500
100221250
10023NaN
100311100
10032NaN

输出:

client_idrankingvalue
100111000
100211500
100311100
100121000
100221250
100321100
100131200
100231250

答案

解题思路

该问题的关键在于确定每个NaN值应该被填充的值。我们需要按照client_idranking升序排列DataFrame,并逐行处理NaN值。

答案代码

import pandas as pddef fill_nan(df):df.sort_values(by=['client_id', 'ranking'], inplace=True)  # 按client_id和ranking升序排列df['value'] = df.groupby('client_id')['value'].ffill()  # 使用前一个非NaN值填充NaNreturn df# 示例DataFrame
clients_df = pd.DataFrame({'client_id': [1001, 1001, 1001, 1002, 1002, 1002, 1003, 1003],'ranking': [1, 2, 3, 1, 2, 3, 1, 2],'value': [1000, None, 1200, 1500, 1250, None, 1100, None]
})print(fill_nan(clients_df))

groupby/sort_value/ffill

groupby()

官方文档:
pandas.DataFrame.groupby — pandas 2.2.2 documentation

语法说明:

DataFrame.groupby(by=None, axis=0, level=None, as_index=True,dropna=True)
  • by: 指定用于分组的列名或列名列表。
  • axis: 指定分组的轴向,默认为 0 表示按行分组。
  • level: 如果轴是多层索引的,则指定要在该级别上分组。
  • as_index: 指定是否将分组键作为索引,默认为 True。
  • dropna: 指定是否将 NaN 值排除在分组之外,默认为 True。

参数axis : 在2.1.0之后的版本被移除。对于 axis=1,使用 frame.T.groupby(...)

sort_values()

官方文档:pandas.DataFrame.sort_values — pandas 2.2.2 documentation

语法说明:

DataFrame.sort_values(by, axis=0, ascending=True, inplace=False)
  • by: 指定用于排序的列名或列名列表。
  • axis: 指定排序的轴向,默认为 0 表示按行排序。
  • ascending: 指定是否按升序排序,默认为 True。
  • inplace: 指定是否在原地排序,默认为 False。

ffill()

官方文档 :pandas.DataFrame.ffill — pandas 2.2.2 documentation

语法说明:

DataFrame.ffill(axis=None, inplace=False, limit=None)
  • axis: 指定填充方向,默认为 None 表示沿着列的方向填充。
  • inplace: 指定是否在原地填充,默认为 False。
  • limit: 指定填充的最大连续 NaN 值的数量,默认为 None 表示不限制。

ffill 是 “forward fill”,向前填充缺失值,与之相对应的是bfill ,全称是 “backward fill”,意思是向后填充缺失值,即使用后一个非 NaN 值来填充缺失值。

更多详细答案可关注公众号查阅。
在这里插入图片描述

这篇关于【数据分析面试】34.填充NaN值 (Python:groupby/sort_value/ffill)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946863

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

BUUCTF(34)特殊的 BASE64

使用pycharm时,如果想把代码撤销到之前的状态可以用 Ctrl+z 如果不小心撤销多了,可以用 Ctrl+Shift+Z 还原, 别傻傻的重新敲了 BUUCTF在线评测 (buuoj.cn) 查看字符串,想到base64的变表 这里用的c++的标准程序库中的string,头文件是#include<string> 这是base64的加密函数 std::string

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip