【ACM】欧几里德算法

2024-04-29 06:48
文章标签 算法 acm 欧几里德

本文主要是介绍【ACM】欧几里德算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。

定理:两个整数的最大公约数等于其中较小的那个数和两个数相除余数的最大公约数。

gcd(a,b) = gcd(b,a mod b)

上述表达式中a>b。限制gcd(a,b) = gcd(|a| , |b|),也就是对非负整数进行了讨论。

证明方法:
(百度百科:a可以表示成a = kb + r(a,b,k,r皆为正整数),则r = a mod b
假设d是a,b的一个公约数,记作d|a,d|b,即a和b都可以被d整除。
而r = a - kb,两边同时除以d,r/d=a/d-kb/d=m,等式左边可知m为整数,因此d|r
因此d也是(b,a mod b)的公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。)
上面的证明方法是没有多大依据的,最后一句中丝毫没有什么说服力。

下面给出欧几里德的正确性推理:

a = kb + r(a,b,k,r均为正整数,且a>b)
r = a mod b
假设d是a,b的一个公约数,记做d = gcd(a,b)
即 d|a , d|b
r = a - kb
r/d = a/d - kb/d
即 d|r ,因此可以得知 d 是 (a,b,r)的公约数
(命题逻辑推理)d|a且d|b可以推出d|b且q|r,设A是(a,b)的公约数集,B是(b,r)的公约数集,C是(a,r)的公约数集,则有A⊆B(集合论)且A⊆C。

只需证明B⊆A和C⊆A即可

假设e是b,r的一个公约数
即 e|b , e|r
a = kb + r
a/e = kb/e + r/e
即e|a,e是(a,b,r)的一个公约数
同上 B⊆A

根据上面的证明得知A=B,所以可以进行最大公约数的递归,即gcd(a,b) = gcd(b , a mod b)。
因为b存在一个系数,所以无法证明C⊆A。

欧几里德算法的正确性:
定义:gcd(a,0) = a;
在递归调用的过程中第二个参数的值单调递减且始终非负,因此仅存在有限递归。

欧几里德算法的时间分析:
欧几里德算法和斐波那契数列有着密切的关联。
(未完待续)

这篇关于【ACM】欧几里德算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/945375

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个