【C++杂货铺】二叉搜索树

2024-04-28 23:20
文章标签 c++ 搜索 二叉 杂货铺

本文主要是介绍【C++杂货铺】二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


目录

🌈前言🌈 

📁 二叉搜索树的概念

📁 二叉搜索树的操作

📂 二叉搜索树的查找

📂 二叉搜索树的插入

📂 二叉搜书树的删除

📁 二叉搜索树的应用

📁 二叉搜索树的实现

📁 二叉搜索树的性能分析

📁 总结


🌈前言🌈 

        欢迎观看本期博文,这期内容讲解二叉搜索树,包括了什么是二叉搜索树,如何实现二叉搜索树,以及二叉搜索树的应用,此外还会分析二叉搜索树的性能。

        在二叉搜索树应用中,会包含K模型,对应的是STL中set容器;KV模型,对应的是STL中的map容器。

📁 二叉搜索树的概念

        二叉搜索树又称为二叉排序树,它或是一颗空树或者具有以下性质的二叉树:

1. 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值。

2. 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值。

3. 它的左右子树也称为二叉搜索树。

📁 二叉搜索树的操作

📂 二叉搜索树的查找

1. 从根开始比较查找,比根大的往右查找,比根小的往左边查找。

2. 最多查找高度次,走到为空,还没找到,则这个值不存在。

📂 二叉搜索树的插入

1. 树为空,则直接新增节点,赋值给root指针。

2. 树不为空,按二叉搜索树性质查找插入位置,插入新节点。

📂 二叉搜书树的删除

        首先查找元素是否在二叉搜索树总,如果不存在,则返回,否则要删除的节点可能分为下面四种情况:

1. 要删除的节点无孩子节点

2. 要删除的节点只有左孩子节点

3. 要删除的节点只有右孩子节点

4. 要删除的节点有左右孩子节点。

        开起来有四种情况,实际情况1可以与情况2或者3结合起来,因此真正的删除过程如下:

情况A:删除该节点且使被删除节点的双亲节点指向被删除节点的左孩子节点 --> 直接删除。

情况B:删除该节点且使被删除节点的双亲节点指向被删除节点的右孩子节点--> 直接删除。

情况C:在它的右子树中寻找中序心爱的第一个节点(Key值最小),用它的值填补被删除节点中,再来处理该节点的删除问题 ---> 替换法删除。

📁 二叉搜索树的应用

1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到 的值。 比如:给一个单词word,判断该单词是否拼写正确,具体方式如下: 以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树 在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

2. KV模型:每一个关键码key,都有与之对应的值Value,即的键值对。该种方 式在现实生活中非常常见: 比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英 文单词与其对应的中文就构成一种键值对; 再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出 现次数就是就构成一种键值对。

📁 二叉搜索树的实现

1. K模型:

	template <class K>struct BSTreeNode{BSTreeNode(K key): _key(key),_left(nullptr), _right(nullptr){}K _key;BSTreeNode* _left;BSTreeNode* _right;};template<class K>class BSTree{typedef BSTreeNode<K>  Node;void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}public://插入bool Insert(K key){if (_root == nullptr){_root = new Node(key);return true;}Node* cur = _root;Node* parent = cur;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{return false;}}if (key > parent->_key){cur = new Node(key);parent->_right = cur;}else{cur = new Node(key);parent->_left = cur;}return true;}//删除bool Erase(const K& key){Node* cur = _root;Node* parent = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (cur == parent->_left){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (cur == parent->_left){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else{//左子树最大的 || 右子树最小的Node* RightMin = cur->_right;Node* RightMinParent = cur;while (RightMin->_left){RightMinParent = RightMin;RightMin = RightMin->_left;}swap(RightMin->_key, cur->_key);if(RightMin == RightMinParent->_left)RightMinParent->_left = RightMin->_right;elseRightMinParent->_right = RightMin->_right;delete RightMin;}return true;}}return false;}//查找Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}else{cout << cur->_key << endl;return cur;}}cout << "Not Find" << endl;return cur;}//遍历void InOrder(){_InOrder(_root);cout << endl;}protected:Node* _root = nullptr;};

2. KV模型:

template <class K,class V>struct BSTreeNode{BSTreeNode(K key, V val): _key(key), _value(val), _left(nullptr), _right(nullptr){}K _key;V _value;BSTreeNode* _left;BSTreeNode* _right;};template<class K,class V>class BSTree{typedef BSTreeNode<K,V>  Node;void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << ":" << root->_value << endl;_InOrder(root->_right);}public://插入bool Insert(const K& key,const V& val){if (_root == nullptr){_root = new Node(key,val);return true;}Node* cur = _root;Node* parent = cur;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{return false;}}if (key > parent->_key){cur = new Node(key,val);parent->_right = cur;}else{cur = new Node(key,val);parent->_left = cur;}return true;}//删除bool Erase(const K& key){Node* cur = _root;Node* parent = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (cur == parent->_left){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (cur == parent->_left){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else{//左子树最大的 || 右子树最小的Node* RightMin = cur->_right;Node* RightMinParent = cur;while (RightMin->_left){RightMinParent = RightMin;RightMin = RightMin->_left;}swap(RightMin->_key, cur->_key);if (RightMin == RightMinParent->_left)RightMinParent->_left = RightMin->_right;elseRightMinParent->_right = RightMin->_right;delete RightMin;}return true;}}return false;}//查找Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}else{return cur;}}return cur;}//遍历void InOrder(){_InOrder(_root);cout << endl;}protected:Node* _root = nullptr;};

📁 二叉搜索树的性能分析

        插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

        对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二 叉搜索树的深度的函数,即结点越深,则比较次数越多。
        但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:log_2 N 最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:N

问题:如果退化成单支树,二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插 入关键码,二叉搜索树的性能都能达到最优?那么我们后续章节学习的AVL树和红黑树就可以上场了。

📁 总结

        以上就是二叉搜索树的所有内容了,讲解了什么是二叉搜索树,二叉搜索树的操作,如何实现二叉搜索树,以及二叉搜索树的应用,K模模型,对应的是STL中的set,KV模型,对应的是map容器。掌握了二叉搜索树,方便日后我们更好的学习ALV树,红黑树。

        如果感觉本期内容对你有帮助,欢迎点赞,关注,收藏Thanks♪(・ω・)ノ

这篇关于【C++杂货铺】二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944532

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么