【C++杂货铺】二叉搜索树

2024-04-28 23:20
文章标签 c++ 搜索 二叉 杂货铺

本文主要是介绍【C++杂货铺】二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


目录

🌈前言🌈 

📁 二叉搜索树的概念

📁 二叉搜索树的操作

📂 二叉搜索树的查找

📂 二叉搜索树的插入

📂 二叉搜书树的删除

📁 二叉搜索树的应用

📁 二叉搜索树的实现

📁 二叉搜索树的性能分析

📁 总结


🌈前言🌈 

        欢迎观看本期博文,这期内容讲解二叉搜索树,包括了什么是二叉搜索树,如何实现二叉搜索树,以及二叉搜索树的应用,此外还会分析二叉搜索树的性能。

        在二叉搜索树应用中,会包含K模型,对应的是STL中set容器;KV模型,对应的是STL中的map容器。

📁 二叉搜索树的概念

        二叉搜索树又称为二叉排序树,它或是一颗空树或者具有以下性质的二叉树:

1. 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值。

2. 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值。

3. 它的左右子树也称为二叉搜索树。

📁 二叉搜索树的操作

📂 二叉搜索树的查找

1. 从根开始比较查找,比根大的往右查找,比根小的往左边查找。

2. 最多查找高度次,走到为空,还没找到,则这个值不存在。

📂 二叉搜索树的插入

1. 树为空,则直接新增节点,赋值给root指针。

2. 树不为空,按二叉搜索树性质查找插入位置,插入新节点。

📂 二叉搜书树的删除

        首先查找元素是否在二叉搜索树总,如果不存在,则返回,否则要删除的节点可能分为下面四种情况:

1. 要删除的节点无孩子节点

2. 要删除的节点只有左孩子节点

3. 要删除的节点只有右孩子节点

4. 要删除的节点有左右孩子节点。

        开起来有四种情况,实际情况1可以与情况2或者3结合起来,因此真正的删除过程如下:

情况A:删除该节点且使被删除节点的双亲节点指向被删除节点的左孩子节点 --> 直接删除。

情况B:删除该节点且使被删除节点的双亲节点指向被删除节点的右孩子节点--> 直接删除。

情况C:在它的右子树中寻找中序心爱的第一个节点(Key值最小),用它的值填补被删除节点中,再来处理该节点的删除问题 ---> 替换法删除。

📁 二叉搜索树的应用

1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到 的值。 比如:给一个单词word,判断该单词是否拼写正确,具体方式如下: 以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树 在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

2. KV模型:每一个关键码key,都有与之对应的值Value,即的键值对。该种方 式在现实生活中非常常见: 比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英 文单词与其对应的中文就构成一种键值对; 再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出 现次数就是就构成一种键值对。

📁 二叉搜索树的实现

1. K模型:

	template <class K>struct BSTreeNode{BSTreeNode(K key): _key(key),_left(nullptr), _right(nullptr){}K _key;BSTreeNode* _left;BSTreeNode* _right;};template<class K>class BSTree{typedef BSTreeNode<K>  Node;void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}public://插入bool Insert(K key){if (_root == nullptr){_root = new Node(key);return true;}Node* cur = _root;Node* parent = cur;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{return false;}}if (key > parent->_key){cur = new Node(key);parent->_right = cur;}else{cur = new Node(key);parent->_left = cur;}return true;}//删除bool Erase(const K& key){Node* cur = _root;Node* parent = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (cur == parent->_left){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (cur == parent->_left){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else{//左子树最大的 || 右子树最小的Node* RightMin = cur->_right;Node* RightMinParent = cur;while (RightMin->_left){RightMinParent = RightMin;RightMin = RightMin->_left;}swap(RightMin->_key, cur->_key);if(RightMin == RightMinParent->_left)RightMinParent->_left = RightMin->_right;elseRightMinParent->_right = RightMin->_right;delete RightMin;}return true;}}return false;}//查找Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}else{cout << cur->_key << endl;return cur;}}cout << "Not Find" << endl;return cur;}//遍历void InOrder(){_InOrder(_root);cout << endl;}protected:Node* _root = nullptr;};

2. KV模型:

template <class K,class V>struct BSTreeNode{BSTreeNode(K key, V val): _key(key), _value(val), _left(nullptr), _right(nullptr){}K _key;V _value;BSTreeNode* _left;BSTreeNode* _right;};template<class K,class V>class BSTree{typedef BSTreeNode<K,V>  Node;void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << ":" << root->_value << endl;_InOrder(root->_right);}public://插入bool Insert(const K& key,const V& val){if (_root == nullptr){_root = new Node(key,val);return true;}Node* cur = _root;Node* parent = cur;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{return false;}}if (key > parent->_key){cur = new Node(key,val);parent->_right = cur;}else{cur = new Node(key,val);parent->_left = cur;}return true;}//删除bool Erase(const K& key){Node* cur = _root;Node* parent = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (cur == parent->_left){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;}else if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (cur == parent->_left){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;}else{//左子树最大的 || 右子树最小的Node* RightMin = cur->_right;Node* RightMinParent = cur;while (RightMin->_left){RightMinParent = RightMin;RightMin = RightMin->_left;}swap(RightMin->_key, cur->_key);if (RightMin == RightMinParent->_left)RightMinParent->_left = RightMin->_right;elseRightMinParent->_right = RightMin->_right;delete RightMin;}return true;}}return false;}//查找Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}else{return cur;}}return cur;}//遍历void InOrder(){_InOrder(_root);cout << endl;}protected:Node* _root = nullptr;};

📁 二叉搜索树的性能分析

        插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

        对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二 叉搜索树的深度的函数,即结点越深,则比较次数越多。
        但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:log_2 N 最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:N

问题:如果退化成单支树,二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插 入关键码,二叉搜索树的性能都能达到最优?那么我们后续章节学习的AVL树和红黑树就可以上场了。

📁 总结

        以上就是二叉搜索树的所有内容了,讲解了什么是二叉搜索树,二叉搜索树的操作,如何实现二叉搜索树,以及二叉搜索树的应用,K模模型,对应的是STL中的set,KV模型,对应的是map容器。掌握了二叉搜索树,方便日后我们更好的学习ALV树,红黑树。

        如果感觉本期内容对你有帮助,欢迎点赞,关注,收藏Thanks♪(・ω・)ノ

这篇关于【C++杂货铺】二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944532

相关文章

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

C# ComboBox下拉框实现搜索方式

《C#ComboBox下拉框实现搜索方式》文章介绍了如何在加载窗口时实现一个功能,并在ComboBox下拉框中添加键盘事件以实现搜索功能,由于数据不方便公开,作者表示理解并希望得到大家的指教... 目录C# ComboBox下拉框实现搜索步骤一步骤二步骤三总结C# ComboBox下拉框实现搜索步骤一这

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象