【汇编】#6 80x86指令系统其二(串处理与控制转移与子函数)

2024-04-28 20:44

本文主要是介绍【汇编】#6 80x86指令系统其二(串处理与控制转移与子函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、串处理指令
    • 1. 与 REP 协作的 MOVS / STOS / LODS的指令
      • 1.1 重复前缀指令REP
      • 1.2 字符串传送指令(Move String Instruction)
      • 1.2 存串指令(Store String Instruction)
      • 1.3 取字符串指令(Load String Instruction)
    • 2. 与 REPE(REPNE)配合工作的CMPS 和 SCAS指令
      • 2.1 相等重复前缀指令 REPE/REPZ
      • 2.2 串比较指令 CMPS
      • 2.3 串搜索指令 SCAS
    • 3. 串输入输出指令 INS/OUTS
  • 二、转移指令
    • 1. 无条件转移指令JMP
    • 2. 条件转移指令
  • 三、循环指令
    • 1. 循环指令 LOOP
    • 2. (不)相等/(不)为零循环指令 LOOP(N)E/LOOP(BN)Z
  • 四、子程序
    • 1. 子程序调用CALL
      • 1.1 段内直接调用
      • 1.2 段内间接调用
      • 1.3 段间直接调用
      • 1.4 段间间接调用
    • 2. 返回指令RET


一、串处理指令

字符串操作指令的实质是对一片连续存储单元进行处理,这 片存储单元是由隐含指针DS:SIES:DI来指定的。

字符串操作指令可对内存单元按字节或字进行处理,并能根据操作对象的字节数使变址寄存器SI(和DI)增减1或2。具体规定如下:(DF控制方向)

  • 当DF=0时,变址寄存器SI(和DI)增加1或2;
  • 当DF=1时,变址寄存器SI(和DI)减少1或2。

1. 与 REP 协作的 MOVS / STOS / LODS的指令

1.1 重复前缀指令REP

重复前缀指令是重复其后的字符串操作指令,重复的次数由 CX来决定

其一般格式为:
REP MOVS / STOS / LODS
每一次循环CX=CX-1(不影响有关标志位),并执行其后的字符串操作指令,CX=0时,停止循环。

1.2 字符串传送指令(Move String Instruction)

功能:将以SI为指针的源串中的一个字节(或字)存储单元中 的数据传送至以DI为指针的目的地址中去,并自动修改指针,
使之指向下一个字节(或字)存储单元

REP MOVS:将数据段中的整串数据传送到附加段中。

  • (DS:[SI])→ES:[DI]。
  • 当DF=0时,(SI)和(DI)增量;当DF=1时,(SI)和(DI)减量。
  • 指令的格式:
    MOVS DST,SRC (需在操作数中表明数据格式)
    MOVSB (字节)
    MOVSW (字)
  • 执行 REP MOVS 之前,应先做好:
    • 源串首地址(末地址)→ SI
    • 目的串首地址(末地址)→ DI
    • 串长度 → CX
    • 建立方向标志

1.2 存串指令(Store String Instruction)

功能:将AL或AX中的数据送入ES:DI所指的目的串中的字节(或 字)存储单元中。

  • 字节操作:(AL)→[DI],字操作:(AX)→[DI]。
  • 修改指针DI,使之指向串中的下一个元素。
    当DF=0时,(DI)增量)。当DF=1时,(DI)减量。
  • 指令的格式:
    STOS DST (需在操作数中表明数据格式)
    STOSB (字节)
    STOSW (字)

1.3 取字符串指令(Load String Instruction)

功能:将SI所指的源串中的一个字节(或字)存储单元中的数据取出来送入**AL(或AX)**中。

  • 字节操作:([SI])→AL,字操作:([SI])→AX。
  • 修改指针SI,使它指向串中的下一个元素。
    当DF=0时,(SI)增量。当DF=1时,(SI)减量。
  • 指令的格式:
    LODS SR(需在操作数中表明数据格式)
    LODSB (字节)
    LODSW (字)

2. 与 REPE(REPNE)配合工作的CMPS 和 SCAS指令

2.1 相等重复前缀指令 REPE/REPZ

一般格式为:
REPE/REPZ CMPS/SCAS

  • 判断条件:CX≠0 且 ZF=1;(CX=0或ZF=0则退出)若条件不成立,则结束重复操作,执行程序中的下一条指令;
  • 条件成立时,CX=CX-1(不影响有关标志位),并执行其后的字符串操作指令,在该指令执行完后,继续对循环条件进行判断。

存在相反指令REPNE/REPNZ,条件判断CX与上相同,ZF与上相反

2.2 串比较指令 CMPS

SI所指的源串中的一个字节(或字)存储单元中的数据与DI所指的目的串中的一个字节(或字)存储单元中的数据相减,并根据相减的结果设置标志,但结果并不保存。

  • ([SI])-([DI])
  • 修改串指针,使之指向串中的下一个
    元素。当DF=0时,(SI)和(DI)增量。当DF=1时,(SI)和(DI)减量。
  • 格式:
    • CMPSB 字节串比较
    • CMPSW 字串比较

2.3 串搜索指令 SCAS

AL(字节)或AX(字)中的内容与DI所指的目的串中的一个字节(或字)存储单元中的数据相减,根据相减结果设置标志位,结果不保存

  • 字节操作:(AL)-([DI]);字操作:(AX)-([DI])
  • 修改指针使之指向串中的下一个元素。当DF=0时,(DI)增量。当DF=1时,(DI)减量。
  • 格式:
    • SCASB 字节串搜索
    • SCASW 字串搜索

3. 串输入输出指令 INS/OUTS

INS:
将由DX寄存器指定的I/O端口中的字、字节传送到附加段中的目的串中,并根据DF和数据类型来改变目的变址寄存器的方向内容

格式:

  • INSB 字节串输入: ES:[DI] ←((DX)),
    DI←DI±1
  • INSW 字串输入: ES:[DI] ← ((DX)),
    DI←DI±2

OUTS:
将由源串中的字、字节传送到在DX寄存器指定的
I/O端口中,并根据DF和数据类型来改变源变址寄存器的
方向内容

格式:

  • OUTSB 字节串输出: ((DX))←DS:[SI]
    SI←SI±1
  • OUTSW 字串输出: ((DX))←DS:[SI]
    SI←SI±2

二、转移指令

转移指令分无条件转移指令有条件转移指令两大类。

  • 无条件转移指令包括:JMP、子程序的调用和返回指令、中断的调用和返回指令等。
  • 条件转移指令又分三大类:
    • 基于无符号数的条件转移指令
    • 基于有符号数的条件转移指令
    • 基于特殊算术标志位的条件转移指令

1. 无条件转移指令JMP

  • 段内直接短转移:JMP (SHORT) OPR
    (IP)← (IP)+ 8位位移量
  • 段内直接近转移:JMP (NEAR PTR) OPR
    (IP)← (IP)+ 16位位移量

位移量是紧接着JMP指令后的那条指令的偏移地址,到目标指令的偏移地址的地址位移。向地址增大方向转移时,位移量为正;反之位移量为负。

  • 段内间接转移: JMP (WORD PTR) OPR
    (IP)← (EA)

将一个寄存器或主存字单元内容送入IP寄存器,作为新的指令指针,但不修改CS寄存器的内容

  • 段间直接远转移:JMP (FAR PTR) OPR
    (IP)← OPR 的段内偏移地址
    (CS)← OPR 所在段的段地址

将标号所在段的段地址作为新的CS值,标号在该段内的偏移地址作为新的IP值;程序跳转到新的代码段执行

  • 段间间接转移: JMP (DWORD PTR) OPR
    (IP)← (EA)
    (CS)← (EA+2)

用一个存储单元表示要跳转的目标地址。这个目标地址存放在主存中连续的字单元中的,低位字送IP寄存器,高位字送CS寄存器


2. 条件转移指令

条件转移指令是一组极其重要的转移指令,它根据标志寄存器中的一个(或多个)标志位来决定是否需要转移,这就为实现多功能程序提供了必要的手段

  • 基本格式:

    • JXX LABEL条件满足,发生转移:IP←IP+位移量
      条件不满足,顺序执行指令
    • 操作数LABEL是采用短转移,称为相对寻址方式
  • 单个条件标志的设置情况转移
    在这里插入图片描述

  • 无符号数的条件转移指令
    在这里插入图片描述

  • 有符号数的条件转移指令
    在这里插入图片描述

  • 测试CX的值为0则转移指令

    • 条件转移指令中还有一条较特殊的指令,因为CX寄存器通常在程序中用做计数器,JCXZ指令就可以用来判断计数是否为0
    • 格式 :JCXZ LABEL CX=0,发生转移:IP←IP+位移量;CX≠0,顺序执行下一指令

三、循环指令

1. 循环指令 LOOP

如果(CX)≠0,转向“标号”所指向的指令,否则,终止循环,执行该指令下面的指令。

语句格式: LOOP 标号

使用LOOP指令可代替两条指令:
    DEC CX
    JNE 标号
转向的范围为-128~+127字节

2. (不)相等/(不)为零循环指令 LOOP(N)E/LOOP(BN)Z

  • 对于LOOPE/LOOPZ:
    • 语句格式: LOOPE/ LOOPZ 短标号
    • 每次循环(CX)=(CX)-1(不改变任何标志位)
      如果CX≠0且ZF=1,则程序转到循环
      体的第一条指令,否则,程序将执行该循
      环指令下面的指令。
  • 对于LOOP(N)E/LOOP(BN)Z:
    • 使用方法相同,判断条件中的ZF条件相反

四、子程序

子程序是完成特定功能的一段程序。如果某程序段在源程序内反复出现,就可把该程序段定义为子程序。这样可以缩短源程序长度、节省目标程序的存储空间,也可提高程序的可维护性和共享性。

1. 子程序调用CALL

类似但不同于JMP指令,CALL指令需要保存返回地址(调用函数时将下一指令的地址压栈)

  • 段内调用——入栈偏移地址IP:
    SP←SP-2,SS:SP←IP
  • 段间调用——入栈偏移地址IP和段地址CS:
    SP←SP-2,SS:SP←IP;
    SP←SP-2,SS:SP←CS。

1.1 段内直接调用

  • 格式:CALL DST
  • 实际步骤:
    • 将子程序的返回地址存入堆栈,以便子程序返回使用。即: (SP)←SP - 2;(SP)+1,(SP)←IP
    • 转移到子程序入口地址去继续执行子程序。指令中的DST在汇编格式指令作为子程序入口地址的符号地址(标号)。在8086机器语言中,它是一个16位的偏移量。即: (IP)←IP+ D16

在这里插入图片描述

1.2 段内间接调用

  • 格式:CALL DST
  • 主要区别是子程序的入口地址DST的寻址方式不同而已。它可以是寄存器操作数和各种寻址方式的存储器操作数,当然不允许是立即数和段寄存器操作数。
    • 例如:
      CALL BX ;BX的内容是子程序的偏移量
      CALL word ptr [BX] ;BX所指内存字单元的值是子程序的偏移量

1.3 段间直接调用

  • 格式:CALL DST
  • 执行操作:
    • SP←SP - 2;
    • (SP)+1,(SP)←CS ;
    • SP←SP - 2;
    • (SP)+1,(SP)←IP ;
    • IP ←偏移地址(指令的第2、3字节);
    • CS ←段地址(指令的第4、5字节);
      在这里插入图片描述

1.4 段间间接调用

  • 格式:CALL DST
  • 执行操作:
    • SP←SP - 2;
    • (SP)+1,(SP)←CS ;
    • SP←SP - 2;
    • (SP)+1,(SP)←IP ;
    • IP ←(EA);
    • CS ←(EA+2);
  • 主要区别是子程序的入口地址DST的寻址方式不同而已。它可以是寄存器操作数和各种寻址方式的存储器操作数,也即由各种寻址方式形成的有效地址EA和EA+1两个单元内容送入IP,EA+2和EA+3两个单元内容送入CS。
    • 例如:
      CALL DWORD PTR [BX];BX所指内存双字单元的值是子程序的偏移量和段值

2. 返回指令RET

  • 段内近返回:RET
    实际操作: (IP )← (SP)+1,(SP)
    (SP)← SP + 2
  • 段内带立即数近返回:RET EXP
    RET 可以带有一个立即数 , 堆栈指针 SP 将增加 , 即
    SP←SP+EXP。这个特点使得程序可以方便地废除若干执行CALL指令以前入栈参数。
  • 段间远返回:RET
    实际操作:(IP) ← (SP)+1,(SP)
    (SP)←(SP) + 2
    (CS)← (SP)+1,(SP)
    (SP)←(SP) + 2
  • 段间带立即数远返回:RET EXP(同段内带立即数返回)

这篇关于【汇编】#6 80x86指令系统其二(串处理与控制转移与子函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944220

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

控制反转 的种类

之前对控制反转的定义和解释都不是很清晰。最近翻书发现在《Pro Spring 5》(免费电子版在文章最后)有一段非常不错的解释。记录一下,有道翻译贴出来方便查看。如有请直接跳过中文,看后面的原文。 控制反转的类型 控制反转的类型您可能想知道为什么有两种类型的IoC,以及为什么这些类型被进一步划分为不同的实现。这个问题似乎没有明确的答案;当然,不同的类型提供了一定程度的灵活性,但

笔记整理—内核!启动!—kernel部分(2)从汇编阶段到start_kernel

kernel起始与ENTRY(stext),和uboot一样,都是从汇编阶段开始的,因为对于kernel而言,还没进行栈的维护,所以无法使用c语言。_HEAD定义了后面代码属于段名为.head .text的段。         内核起始部分代码被解压代码调用,前面关于uboot的文章中有提到过(eg:zImage)。uboot启动是无条件的,只要代码的位置对,上电就工作,kern

深入解析秒杀业务中的核心问题 —— 从并发控制到事务管理

深入解析秒杀业务中的核心问题 —— 从并发控制到事务管理 秒杀系统是应对高并发、高压力下的典型业务场景,涉及到并发控制、库存管理、事务管理等多个关键技术点。本文将深入剖析秒杀商品业务中常见的几个核心问题,包括 AOP 事务管理、同步锁机制、乐观锁、CAS 操作,以及用户限购策略。通过这些技术的结合,确保秒杀系统在高并发场景下的稳定性和一致性。 1. AOP 代理对象与事务管理 在秒杀商品

PostgreSQL中的多版本并发控制(MVCC)深入解析

引言 PostgreSQL作为一款强大的开源关系数据库管理系统,以其高性能、高可靠性和丰富的功能特性而广受欢迎。在并发控制方面,PostgreSQL采用了多版本并发控制(MVCC)机制,该机制为数据库提供了高效的数据访问和更新能力,同时保证了数据的一致性和隔离性。本文将深入解析PostgreSQL中的MVCC功能,探讨其工作原理、使用场景,并通过具体SQL示例来展示其在实际应用中的表现。 一、

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果