数据分析的三重境界,你在哪个阶段?

2024-04-28 11:48

本文主要是介绍数据分析的三重境界,你在哪个阶段?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

56ecbbf07b14061b11817784ed19d294.png

工作生活中的很多问题,其实都可以用数据方法解决,数据解决的关键就在于如何将抽象的事物或业务,依据内在逻辑,提炼出结构化的特征。本文主要围绕工作业务场景进行梳理,以做学问的三重境界为切入,梳理数据应用分析的过程和方法。

前段时间有档节目,《说唱新世代》,slogan是“万物皆可说唱“,从社会热点到赞助广告,没有说唱玩不了的内容。起笔写下1年来分析师的总结感悟时,也是想到了这句话,”万物皆可分析“,想要表达的是,工作生活中的很多问题,其实都可以用数据分析方法解决,数据解决的关键就在于如何将抽象的事物或业务,依据内在逻辑,提炼出结构化的特征。

举个生活中的栗子,比如你想买房,有2个备选方案各有优点,你非常犹豫无法抉择。A位置好,小区环境好,但价格太高超出部分预算;B位置一般,小区环境一般,但是价格便宜且在预算范围内。

这时,你可以把房屋的选择抽象为3个关键因素(衡量指标),分别是地理位置、小区环境和价格,然后写下你对于各项因素的考虑权重(保持相加总和为1),通过你的实际感受对2个房源的3项因素分别打分(比如最高10分),最终将各项因素的权重和得分相乘累加,可以获得2个房源理性得分(如下表)。

92f6eddc01f2d4acc96502cec97b1245.png

好了,看来你内心更倾向于A房子。

言归正传,接下来本文主要围绕工作业务场景进行梳理,王国维曾说做学问的三重境界,第一重“独上高楼,望尽天涯路”,第二重“衣带渐宽终不悔,为伊消得人憔悴”,第三重“蓦然回首,那人却在灯火阑珊处”。数据分析解决业务问题,也有这三重,以此为切入,梳理数据应用分析的过程和方法。

独上高楼,望尽天涯路

登上高楼,可以看到路的尽头,事物面貌尽收眼底。数据应用的这一重,通过数据来概括事物的特征,可以知其然。

1.1 了解业务现状

为了准确的提炼出事物的关键特征,需要明确业务现状,清晰定义业务问题。需要走出去了解业务现状,不能闭门造车,包括业务设计逻辑和业务实操流程,这是明确业务问题和特征的基础。

寻找关键角色和关键事项

关键角色一般是业务执行方或者需求方,他们是业务的一线同学,负责业务流程的设计和执行,对于业务流程有着更为深入的理解。关键事项是指具体的业务流程,比如研究仓内生产效率,与之相关的业务事项就是仓内作业生产。

业务流程认知

业务流程认知的过程,是和用户在一起的过程。通过和关键角色沟通,可以获得关键角色输入的二手资料。很多事在过来人看来是自然而然的,存在虽然合理,可以满足业务现有需求,但未必是最优解,因此需要辩证听取业务输入,保持信息接收,保持思考独立,不断提问和挖掘业务内在逻辑。

深入走查关键事项,可以获得业务实操带来的一手资料。这是不经关键角色加工后的内容,一方面可以带着二手资料获取的信息,去实操感悟,数据结论如果站得住脚,可以做哪些针对性的业务动作;另一方面可以发现二手资料无法带来的业务角度,更为立体地理解业务全貌。比如通过走仓,直观了解仓内的生产流程,比业务加工后的二次输入来的更加立体。

归纳业务问题

通过业务流程认知,了解可能存在问题的业务环节,并对业务问题进行归纳整理。通过描述性分析(平均值/最大值等)、对比分析(环比/同比等)等常用的数据现状探查方法,可以归纳现有的业务问题。比如在业务重点项目中,对比现有指标和目标值,可以发现业务目标达成的现状,对于未达成目标的指标,也是未来去优化改善的事项。

1.2 明确分析目的

明确业务关键问题

对于数据探查或研究型的分析,即没有明确的目标指向性时,需要在归纳得到的多项业务问题中,通过关键角色调研,或者数据相关分析、回归分析,确定对于业务达成影响的关键指标和问题的主要矛盾是什么,这决定了分析的重点是什么,能通过对20%的指标进行分析,解决80%的问题。

明确业务深层目的

对于业务方提出的明确需求,通过了解业务现状,获得需求分析的前因后果(即为什么要启动分析,用于解答什么业务问题,分析输出结果具体用途是什么),最终目的是基于业务原始需求,明确需求目的,并对分析目的进行解构,便于下一阶段的分析。

衣带渐宽终不悔,为伊消得人憔悴

这一重,知其然而后达到知其所以然,数据表现只是表象,为了解释关键指标或者需求数据的变化或构成,需要去探查数据背后的原因。这个过程的目的是为了解决问题,通常是耗费时间精力的,需要有第二重境界的觉悟:为了关键数据的分析,衣带渐宽不后悔,这是值得为之憔悴的事情。

2.1 确定分析框架

分析框架包括但不限于分析模块、分析假设、分析方法、具体分析的维度/指标、指标具体的口径等,主要的作用是需要在开始分析前,就规划好从开始到结束的路径。

MECE法则,提出假设

假设主要解答的是“为什么”,即指标为什么波动,受到什么业务逻辑或购买心理影响。

假设的提出遵循MECE法则,这是《金字塔原理》中提到的一个思考工具,即“相互独立,完全穷尽”,需要尽可能的穷举所有的可能性,是从少到多的过程,一方面需要前期深入了解业务现状,基于业务理解,才能提出贴近业务实际的假设,不至于南辕北辙;另一方面,需要尽量突破现有思维框架的限制,这时候可以借助成熟的分析工具(PDCA、层次分析法等)帮助达到MECE。

提出假设的同时,还需要考虑如果假设得到验证,可以采取哪些措施,如果是天马行空无法落地的假设,也是无法产生业务价值、无法解决业务问题的。

拆解维度和指标

提出假设以后,需要去思考用怎样的维度和数据指标,可以验证假设。维度的拆解,需要基于业务理解;指标的确认,需要基于数据思维。

比如在计划补货中,探查哪些原因影响了缺货率的走高,可以假设①补货下单的影响,假设 ②柔性不够增加了缺货影响。在两种假设中,可以拆分维度BU、SPU,去看指标关键指标的变化。

好的开始是成功的一半

分析框架的质量,决定了最终的分析质量。因为一旦开始执行,就很难再会去思考新的分析视角。所以确定好分析框架再开始,其实就是分析成功的一半。一方面,可以试着从关键角色(比如业务执行者、汇报的业务领导)的角度思考问题,跳出所沉浸的问题本身;另一方面,与关键角色、组内同学讨论分析框架,集思广益,尽量减少分析盲点。

同时,基于完整的分析框架,需要与关键角色确定最终的交付产出,如果内容较多,最好能够有分阶段产出的时间规划,双方达成一致,方向对齐。

2.2 判断数据结论

获取基础数据

分析框架确定后,就需要进行数据开发。数据开发的产出结果直接影响了数据结论的判断,对于数据开发过程,一方面是线上数据和线下数据的校验成本不同,线上数据通常是经过清洗的可直接使用数据,线下数据需要确认数据统计逻辑,保证数据质量;二是需要保证数据结果校验,通过极值、空值、异常值校验,反查数据开发逻辑,在保证数据准确性的基础上再进行数据结论判断。

数据描述不是数据结论

呈现分析结果时很容易把数据描述和数据结论混为一谈,但二者是两个层面的输出。

数据描述是数据的表现和现状。数据描述尽量图表可视化,但不要为了可视化而可视化,数据的目的,是以能说明问题为出发点的,尽量不放和结论无关的数据图表。

数据结论是对于数据描述的解读。结论需要尽量精简表述,同时站在阅读者的角度上思考可读性,都是可以降低阅读者心理门槛的。

蓦然回首,那人却在灯火阑珊处

这一重,是基于数据结论得出业务建议的过程。这是数据分析的最终目的,帮助发现业务机会,发挥业务价值。最终实现第三重境界:业务发展的过程中,总是在寻找业务突破点,通过数据分析结论和业务建议,会发现原来业务过程中未曾留意的落地价值点。

3.1 提出业务建议

业务建议是基于结果指标到过程指标的拆解,提供给业务的可落地方案。有价值的业务建议是基于清晰数据结论,加之业务了解的基础上得来的。业务建议是可供业务讨论优化的,如果没有业务建议的分析,是容易让业务执行陷入决策瘫痪的,从而放弃业务落地和改变,继续原来无需改变选择的舒适圈。

3.2 传达分析结果

最终的结果汇报,是讲故事的过程,其实很依赖于分析师的经验,在这方面,仅能以不太多的经验做一些总结记录。

在精不在多

不要写冗长的报告,报告内容在精不在多。报告的价值体现不在于长度,而在于结论、观点和建议。

好的开头,好的结尾

好的故事开头应该直截了当的告诉阅读者,观点和结论是什么。让阅读者既获取了整体内容大纲,也带着问题继续主要内容的了解。好的故事结尾应该是业务建议,既建议业务应该采取什么样的行动,并能够给出业务行动带来的价值改变。

当然,并非所有的应用数据解决问题的路径,都必经过这三重阶段。比如,如果只是想知道昨天的库转是多少,那只要经过第一重阶段就可以获得结果了。但这三重阶段,按我现在的理解,基本覆盖比较全面的数据分析过程,也希望在后续的分析工作中继续积累,与各位共勉。

作者简介:九乐(le),网易严选数据分析师,数据路上的求知者,负责严选供应链计划的分析工作。

转自:网易有数 公众号;

END


版权声明:本号内容部分来自互联网,转载请注明原文链接和作者,如有侵权或出处有误请和我们联系。


合作请加QQ:365242293  

数据分析(ID : ecshujufenxi )互联网科技与数据圈自己的微信,也是WeMedia自媒体联盟成员之一,WeMedia联盟覆盖5000万人群。

aa98dcc5e517169cdba13812a512f6be.png

这篇关于数据分析的三重境界,你在哪个阶段?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943189

相关文章

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

笔记整理—内核!启动!—kernel部分(2)从汇编阶段到start_kernel

kernel起始与ENTRY(stext),和uboot一样,都是从汇编阶段开始的,因为对于kernel而言,还没进行栈的维护,所以无法使用c语言。_HEAD定义了后面代码属于段名为.head .text的段。         内核起始部分代码被解压代码调用,前面关于uboot的文章中有提到过(eg:zImage)。uboot启动是无条件的,只要代码的位置对,上电就工作,kern

8阶段项目:五子棋(附带源码)

8阶段项目:五子棋 8.1-技术实现 1.静态变量 静态变量只能定义在类中,不能定义在方法中。静态变量可以在static修饰的方法中使用,也可以在非静态的方法中访问。主要解决在静态方法中不能访问非静态的变量。 2.静态方法 静态方法就相当于一个箱子,只是这个箱子中装的是代码,需要使用这些代码的时候,就把这个箱子放在指定的位置即可。   /*** 静态变量和静态方法*/public cl

win7下安装Canopy(EPD) 及 Pandas进行python数据分析

先安装好canopy,具体安装版本看自己需要那种,我本来是打算安装win764位的,却发现下载总是出现错误,无奈只能下载了32位的! https://store.enthought.com/downloads/#default 安装好之后,参考如下连接,进行检验: 之后再根据下面提供的连接进行操作,一般是没问题的! http://jingyan.baidu.com/article/5d6

「大数据分析」图形可视化,如何选择大数据可视化图形?

​图形可视化技术,在大数据分析中,是一个非常重要的关键部分。我们前期通过数据获取,数据处理,数据分析,得出结果,这些过程都是比较抽象的。如果是非数据分析专业人员,很难清楚我们这些工作,到底做了些什么事情。即使是专业人员,在不清楚项目,不了解业务规则,不熟悉技术细节的情况下。要搞清楚我们的大数据分析,这一系列过程,也是比较困难的。 我们在数据处理和分析完成后,一般来说,都需要形成结论报告。怎样让大

2023 CCPC(秦皇岛)现场(第二届环球杯.第 2 阶段:秦皇岛)部分题解

所有题目链接:Dashboard - The 2023 CCPC (Qinhuangdao) Onsite (The 2nd Universal Cup. Stage 9: Qinhuangdao) - Codeforces 中文题面: contest-37054-zh.pdf (codeforces.com) G. Path 链接: Problem - G - Codeforces

【笔记-流程记录】从零开始做一个人形怪兽(建模阶段)

大型 1.第一步还是找素模,打开材质球,吸管点一下,就会出现素模的贴图,一共有四个 比如,点进去第一个,再点漫反射,再点psd就会得到相应的贴图 2.然后我们依然是面片然后插入参考图 如果透视窗口啥都没有,按g也不显示线框。那按下z(居中视图),然后再试一下按G显示栅格。 3.导入素模,重置变换 注释:重置变换是一个非常有用的功能,主要用于将对象的变换属性(位置、旋

结合Python与GUI实现比赛预测与游戏数据分析

在现代软件开发中,用户界面设计和数据处理紧密结合,以提升用户体验和功能性。本篇博客将基于Python代码和相关数据分析进行讨论,尤其是如何通过PyQt5等图形界面库实现交互式功能。同时,我们将探讨如何通过嵌入式预测模型为用户提供赛果预测服务。 本文的主要内容包括: 基于PyQt5的图形用户界面设计。结合数据进行比赛预测。文件处理和数据分析流程。 1. PyQt5 图形用户界面设计

使用AI大模型进行企业数据分析与决策支持

使用AI大模型进行企业数据分析与决策支持已成为现代企业管理的重要趋势。AI大模型凭借其强大的数据处理能力和智能分析功能,能够为企业提供精准、高效的数据分析服务,进而支持企业的决策过程。以下是使用AI大模型进行企业数据分析与决策支持的具体方式和优势: 一、AI大模型在数据分析中的应用 超级数据处理能力 海量数据处理:AI大模型能够同时处理海量数据,包括结构化数据、非结构化数据等,满足企业大规模

[Android] [SnapdragonCamera] 单摄(横屏)阶段总结

在研高通平台的单摄项目中遇到了很多适配问题,做一下初步的总结,为今后遇到相似的问题,提供参考方案。          1. 横屏设置相机预览显示不正常               1.1问题现象                       1.2分析与解决              骁龙相机默认的预览方向是“portrait”。在横屏设备上显示的时候就会出现上面效果。实际