【数据标注】使用LabelImg标注YOLO格式的数据(案例演示)

2024-04-27 16:28

本文主要是介绍【数据标注】使用LabelImg标注YOLO格式的数据(案例演示),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • LabelImg介绍
    • LabelImg安装
    • LabelImg界面
    • 标注常用的快捷键
    • 标注前的一些设置
    • 案例演示
    • 检查YOLO标签中的标注信息是否正确
    • 参考文章


LabelImg介绍

LabelImg是目标检测数据标注工具,可以标注两种格式:

  • VOC标签格式,标注的标签存储在xml文件
  • YOLO标签格式,标注的标签存储在txt文件中

LabelImg官网:

labelImg的GitHub链接:https://github.com/HumanSignal/labelImg


LabelImg安装

在Anaconda创建的虚拟环境中使用pip安装LabelImg
1、打开 Anaconda Prompt
2、创建一个虚拟环境

conda create -n use_labelimg python=3.6

3、激活虚拟环境

conda activate use_labelimg

4、使用pip安装LabelImg(有挂代理/梯子记得关掉)

pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

5、执行以下命令打开LabelImg

labelimg

在这里插入图片描述


LabelImg界面

在这里插入图片描述


标注常用的快捷键

  • W:调出标注的十字架,开始标注
  • A:切换到上一张图片
  • D:切换到下一张图片
  • Ctrl+S:保存标注好的标签
  • del:删除标注的矩形框
  • Ctrl+鼠标滚轮:按住Ctrl,然后滚动鼠标滚轮,可以调整标注图片的显示大小
  • Ctrl+u:选择要标注图片的文件夹
  • Ctrl+r:选择标注好的label标签存放的文件夹
  • ↑→↓←:移动标注的矩形框的位置

标注前的一些设置

点击View显示如下图,然后把如下的几个选项勾上:

  • Auto Save mode:当你切换到下一张图片时,就会自动把上一张标注的图片标签自动保存下来,这样就不用每标注一样图片都按Ctrl+S保存一下了
  • Display Labels:标注好图片之后,会把框和标签都显示出来
  • Advanced Mode:这样标注的十字架就会一直悬浮在窗口,不用每次标完一个目标,再按一次W快捷键,调出标注的十字架。

在这里插入图片描述


案例演示

1、假设在我的 green_plate文件夹 中已经存放了所要进行标注的车牌图片
在这里插入图片描述
2、在 LabelImg界面 通过 Open Dir 导入 green_plate文件夹
在这里插入图片描述
3、在 LabelImg界面 通过 Change Save Dir 选择 存放标注好图片的文件夹路径
在这里插入图片描述

4、在 LabelImg界面 点击 View 进行标注前的一些设置
5、设置标注的文件格式为YOLO
在这里插入图片描述
6、按W键调出标注的十字架,开始标注

可通过Ctrl+鼠标滚轮调整标注图片的显示大小,方便对目标进行标注
在这里插入图片描述

7、对一张图片标注完成后,按D键切换到下一张图片继续标注
8、如果需要对一个标注好的矩形框进行删除,可以按以下图片中的操作进行
在这里插入图片描述
9、重复以上步骤直至所有的图片标注完成
10、在存放标注好图片的文件夹中查看标注好的文件
在这里插入图片描述


检查YOLO标签中的标注信息是否正确

通过读取图像文件和相应的标签文件来绘制边界框,并在窗口中显示带有边界框的图像。
如果边界框的位置和大小与预期相符,那么可以认为YOLO格式的标签是正确的。

"""
文件名: CheckYOLOLabels.py
功能描述: 检查YOLO标签中的标注信息是否正确
"""import os
import cv2
import matplotlib.pyplot as plt
import numpy as npdef listPathAllfiles(dirname):"""遍历指定目录下的所有文件并返回一个包含这些文件路径的列表。"""result = []for maindir, subdir, file_name_list in os.walk(dirname):for filename in file_name_list:apath = os.path.join(maindir, filename)result.append(apath)return resultif __name__ == '__main__':# YOLO图片文件的保存路径imagespath = "DeepLearningProjects\\green_plate"# YOLO标签文件的保存路径labelspath = "DeepLearningProjects\\process_green_plate"# 获取所有标签文件的路径labelsFiles = listPathAllfiles(labelspath)# 逆序遍历标签文件,因为通常最新的文件在最后for lbf in labelsFiles[::-1]:# 读取标签文件的每一行,并将其分割成一个列表labels = open(lbf, "r").readlines()labels = list(map(lambda x: x.strip().split(" "), labels))# 构造对应的图片文件名imgfileName = os.path.join(imagespath, os.path.basename(lbf)[:-4] + ".jpg") # .jpg# 从文件中读取图片,cv2.imdecode函数可以将字节流解码为图像img = cv2.imdecode(np.fromfile(imgfileName, dtype=np.uint8), 1)# 遍历每个标签for lbs in labels:# 将标签字符串转换为浮点数,并去掉类别索引lb = list(map(float, lbs))[1:]# 根据标签计算边界框的左上角和右下角坐标x1 = int((lb[0] - lb[2] / 2) * img.shape[1])y1 = int((lb[1] - lb[3] / 2) * img.shape[0])x2 = int((lb[0] + lb[2] / 2) * img.shape[1])y2 = int((lb[1] + lb[3] / 2) * img.shape[0])# 在图像上绘制边界框cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255), 5)# 调整图像大小,使其最大边长为600像素ratio = 600 / min(img.shape[0:2])img = cv2.resize(img, dsize=(int(img.shape[1] * ratio), int(img.shape[0] * ratio)))# 显示带有边界框的图像cv2.imshow("Image", img)# 等待用户按键,按任意键继续cv2.waitKey()# 关闭所有OpenCV创建的窗口cv2.destroyAllWindows()

参考文章

目标检测使用LabelImg标注VOC数据格式和YOLO数据格式——LabelImg使用详细教程

这篇关于【数据标注】使用LabelImg标注YOLO格式的数据(案例演示)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940977

相关文章

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是