OSPFv3基础和与v2的对比

2024-04-27 15:38
文章标签 基础 v2 对比 ospfv3

本文主要是介绍OSPFv3基础和与v2的对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述:

OSPF(Open Shortest Path First)是IETF组织开发的一个基于链路状态的内部网关协议(Interior Gateway Protocol)。目前针对IPv4协议使用的是OSPF Version 2,针对IPv6协议使用OSPF Version 3。

OSPFv3在OSPFv2基础上进行了改进,是一个独立的路由协议。在华为设备上如果要支持IPv4和IPv6,需要同时配置OSPFv2及OSPFv3两个路由进程。

OSPFv3设计时基于OSPFv2,但又区别于OSPFv2,其改进了OSPFv2 协议的缺点,增强了协议的扩展性及灵活性。以下从OSPFv3和OSPFv2对比的角度对OSPFv3加以阐述。

OSPFv3和OSPFv2相同点:

OSPFv3基于OSPFv2,所以有很多相同点:

  1. 网络类型和接口类型。
  2. 接口状态机和邻居状态机。
  3. 链路状态数据库(LSDB)。
  4. 洪泛机制。
  5. 相同类型的报文: Hello 报文、DD报文、LSR报文、LSU报文和LSAck报文。
  6. 算法及路由计算过程。

OSPFv3和OSPFv2不同点:

1.OSPFv3基于链路,而不是网段
OSPFv3运行在IPv6协议上,IPv6是基于链路而不是网段的。这样,在配置OSPFv3时,不需要考虑是否配置在同一网段,只要在同一链路,就可以接口可以不配置IPv6全局地址而直接建立联系。因为OSPF是通过本地链路地址建立的邻居,也是通过本地链路地址计算出SPF树,而全球单播地址的接口通告进行去只是SPF树上的子叶——路由条目,所以要求双方接口可以不配置为同一网段。(只是这个两个接口不能通过不同网段的全球单播地址通信而已)
在这里插入图片描述
由于OSPFv3通过链路地址建立邻居,这样的好处是:

  1. 不需要配置IPv6全局地址,就可以得到OSPFv3拓扑,实现拓扑与地址分离。
  2. 在链路本地地址上泛洪的报文不会传到其他链路上,可减少报文不必要的泛洪。

2.OSPFv3上移除了IP地址的意义
这样做的目的是为了使“拓扑与地址分离”。OSPFv3可以不依赖IPv6全局地址的配置来计算出OSPFv3的拓扑结构。IPv6全局地址仅用于Vlink接口及报文的转发。也就是刚刚说的通过链路地址计算出SPF树,路由只是子叶(路由只能是全球单播地址产生,链路地址只能在本地使用,所以不会产生路由条目)。

OSPFv2的LSAl/LSA2中含有太多和IPv4协议地址相关的信息,如LSA1中的任何一种类型的Link (除StubNet外),其Link Data是设备本地接口的IPv4地址,LinkID 是DR的接口IP或邻居的RID等。通过观察LSA1/LSA2的内容就可知OSPF传递的IPv4协议。

如果IPv6 OSPFv3依然使用这种方式,IPv6 协议地址会占用LSA中过多字节空间,若将来扩展OSPFv3 使其支持新的协议地址,也需要重新改写协议报文,所以OSPFv3在设计现有的协议报文时,从LSA中“移除”对协议地址(如IPv4、IPv6)的依赖性。

具体差别体现在1类和2类LSA上,具体对比内容如下:
在这里插入图片描述
经过上述对比,可知OSPFv3 LSA1/2中用于表述拓扑时,用二元组[RID,接口ID]来取代OSPFv2中针对对方节点的表示,用接口ID来取代本地接口的IP地址; LSA1/2中没有使用任何协议地址,这样做的结果是LSA1/2 中“拓扑与协议地址分离了”,不再依赖于协议地址,这意味着LSA1/LSA2描述的拓扑可以为任何协议簇服务,RFC 5838已经设计OSPFv3成为可支持IPv4及IPv6等协议的路由协议,不需要为每个协议单独创建协议进程,但目前华为尚不支持。在IPv4和IPv6双栈的环境中仍需同时运行OSPFv2和OSPFv3进程。

例外是OSPFv3下的Vlink场景,非直连的邻居(由于无法通过链路地址通信)需要靠Global Unicast地址来标识。IPv6全局地址仅出现在Vlink接口及报文的转发的场合。

3.链路间的泛洪范围
OSPFv3添加了链路间的泛洪范围,新的LSA8 (Link LSA)类型仅可以在邻居之间通告,其LSA不会被泛洪到其他链路。LSA8所承载的内容仅在直连的邻居之间有用,用于通告该link.上的前缀及link-local 地址。OSPF v3中LSA的洪泛范围归纳为3类,放在LSA的LS类型域(field)。这三类是:

  1. 本地链路范围:LSA只在本地链路上传播,这类LSA是Link-LSA。
  2. 区域范围:LSA只在一个OSPF区域内部传播,这类LSA包括Router-LSA、Network-LSA、Inter-Area-Prefix-LSA、Inter-Area-Router-LSA和Intra-Area-Prefix-LSA。
  3. 自治系统范围:LSA在整个自治系统内传播,这类LSA有AS-external-LSA,Nssa-LSA。

4.OSPFv3 支持一个链路上多个进程
OSPFv3在OSPF报又大添加了一个新的子域:Instance ID,已是定又在按口的标识OSPF实例的0~255的数。OSPFv2下,一个接口上只能有一个OSPF实例运行,现在可以让-一个接口同时运行多个OSPF实例,彼此使用不同的Instance ID区分。这些运行在同一条物理链路.上的多个OSPFv3实例分别与同链路上多个相同实例ID的邻居建立邻居关系,这可使一个网段上同时出现多个OSPF路由域,彼此互不干扰,可以充分共享同一链路资源。如果 OSPFv3 报文收到实例号不同的 Hello 报文,则忽略,邻居关系建立不起来。
在这里插入图片描述
例如在下图中,RouterA和RouterD之间会建立OSPF邻居,RouterB和RouterC之间建立邻居关系。RouterA和RouterB之间不会建立。
在这里插入图片描述
5.OSPFv3移除所有认证字段
OSPFv3移除OSPFv2的接口或区域下的验证,原因是OSPFv3可直接使用IPv6扩展报文头的认证及安全机制,不需要再重复提供认证,使用协议时只需关注协议本身即可,降低协议的复杂性。
在这里插入图片描述
对应checksum字段也有一定的区别:OSPFv3使用IPv6标准的check sum。IPv6的效验和覆盖范围比较IPv4,将会覆盖IPv6的报头。
在这里插入图片描述
6.OSPFv3 只通过 Router ID 来标识邻居
OSPFv3只通过Router ID来标识邻居,这样即使没有配置IPv6全局地址,或是IPv6全局地址配置都不在同一网段,OSPFv3的邻居仍可以建立起来,以达到“拓扑与地址分离”的目的。OSPFv3中Router ID和OSPFv2中一样,是32位的数,在OSPFv3中,可手工为OSPFv3路由器设置Router ID。

OSPFv2在Broadcast,NBMA及P2MP网络中是通过IPv4接口地址来标识的。

7.新增两种 LSA
Link LSA:用于宣告链路上的Link-local地址及IPv6 Prefix 地址,其仅在本地链路上洪泛。
Intra Area Prefix LSA:用于向其他路由器宣告本路由器或本网络(广播网及NBMA)的IPv6全局地址信息,在区域内洪泛。

OSPFv3 中新 LSA 及其对收敛的影响:

8类LSA:Link LSA
LinkLSA用于通告在本链路.上直连的路由器间有用的信息,接在本链路上的每台路由器都通告自己的Link LSA到直连链路。当然,路由器也会从该接口收到所有接在这条链路上的其他路由器的Link LSA。Link LSA中包含以下内容:

  1. 向链路上的其他路由器通告本地Link-local地址。
    由于OSPFv3 Router LSA中Link Data中移除了协议地址,代之以接口ID。拓扑在表达连接关系时多用接口ID来描述。但在路由计算时,如果计算经过邻居的接口0x3要访问目标网络的路由时,需在当前路由表里添加邻居的0x3接口所对应的IPv6地址来充当下一跳。
    OSPFv3路由的下一跳地址一律是Link-local 地址,当前路由器要知道0x3接口的Link-local地址需要用到邻居通告的Link LSA,其中包含0x3和Link-local地址的对应关系。

  2. 通告关联在路由器上且出现在该链路上的所有IPv6前缀信息。
    在OSPFv3中,区域内的每个节点上的所有前缀都包含在Intra-Area Prefix LSA中,但Intra-Area PrefixLSA中并没有清楚说明哪些前缀各自对应着哪条链路,而LinkLSA负责通告指定链路.上的前缀信息。

  3. 如果是MA网络,通告LSA2中选项位的置位情况。

9类LSA:Intra-Area Prefix LSA
OSPFv2的主要缺点除了不能支持IPv6外,还在于其LSA1/LSA2会承载和拓扑结构无关的网络信息,所以重新设计OSPFv3 时,将LSA1/LSA2中的网络信息移除至Intra-Area Prefix LSA中,此处简称LSA9。LSA9的作用是携带区域内的网络信息,即原OSPFv2的RouterLSA中的Stub网络信息和LSA2中的网络信息,放到OSPFv3的LSA9。这样,实现拓扑信息和网络信息分别使用不同的LSA来携带。

在OSPFv3中,接口上GUA/ULA地址配置错误及不一致都不会影响OSPFv3的邻居关系。GUA及ULA前缀相对于节点本身而言,就相当于树节点上挂的叶子节点。所以接口的前缀发生变化不影响网络拓扑,不会触发SPF计算。

LSA8 实现拓扑和协议地址分离
LSA1/LSA2移除了对协议地址的依赖,不再包含接口的协议地址,而换之以接口ID,这实现了拓扑和协议地址的分离。但计算路由时,仍需要接口IPv4或IPv6地址作为下一跳,所以分离后的接口协议地址由LSA8提供。同时,LSA9虽通告区域内的前缀,但由于LSA1/2的接口用ID表示,无法说明LSA9中所包含的前缀属于哪个具体的接口,所以LSA8在完成接口ID 和接口Link-local 地址对应的同时,还包含接口上所拥有的前缀。

通告Link-local地址、前缀、接口ID的LSA8仅在直连路由器之间知道即可,没必要在全网泛洪,所以限定LSA8仅在直连链路上泛洪。

LSA9 实现拓扑和网络信息的分离
Link9通告每个节点(包含虚节点和实节点)的网络信息,其内容是原LSA1中的StubNet和LSA2中的网络信息。设计LSA9后,LSA1 和LSA2中仅包含用于拓扑计算的拓扑信息,区域内的网络信息使用LSA9 (正确的说是LSA 2009)来携带。这样网络信息的变化仅影响LSA9,而不会导致拓扑的重新计算,所以LSA9的设计实现了拓扑和网络信息的解耦。

定义LSA9使得接口前缀变化,不会触发拓扑的计算。这使OSPFv3更适宜支持更多的协议,不论是支持何种协议,OSPFv3 仅需要改造LSA8及LSA9即可,LSA1/2 不做任何改动。这使OSPFv3具备很强的扩展性和支持多协议的能力,IETF RFC5340 和RFC 5838定义了OSPFv3 可支持多协议地址簇,如使OSPFv3承载IPv4路由、承载IPv6路由等。

对收敛的影响
Router LSA和Network LSA在OSPFv3中,不再负责通告前缀。所以,在LSA1中,看不到描述前缀的Stub,在LSA2中,也看不到定义网络的掩码。这对OSPFv3是个改进,它使协议可以使用单独的一类LSA去做前缀通告,在区域内,设计了Intra-Area Prefix LSA。

之所以会有这种变化( 或者其变化的必然性在于),OSPFv2 中LSA1/LSA2含有拓扑和网络信息,当网络发生变化时,OSPFv2 路由器会更新LSA通告这些变化,若LSA中含有的拓扑信息发生变化,则新的LSA会触发FULL SPF或iSPF计算,如果仅Stub网络变化了,新的LSA触发SPF计算,拓扑计算前后的结果一样,浪费资源。OSPFv3把网络放在LSA9中,只有LSA1/2才会触发SPF执行拓扑计算,所以LSA9的变化或产生,不会触发SPF计算,节省计算资源的同时,计算时间也很短。

由于相比于OSPFv2,OSPFv3中,Intra-Area Prefix、Inter- Area Prefix、Inter- Area Router、as-external LSA及type-7 LSA,这些是OSPF中传递网络前缀或成本信息的LSA。它们的任何变化,只要拓扑没有同时发生变化,只会触发局部路由计算。因此OSPFv3相比OSPFv2在收敛时间上会快很多。

参考资料:《HCIE路由交换学习指南》、HCIE培训资料

这篇关于OSPFv3基础和与v2的对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940887

相关文章

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

python中字符串拼接的几种方法及优缺点对比详解

《python中字符串拼接的几种方法及优缺点对比详解》在Python中,字符串拼接是常见的操作,Python提供了多种方法来拼接字符串,每种方法有其优缺点和适用场景,以下是几种常见的字符串拼接方法,需... 目录1. 使用 + 运算符示例:优缺点:2. 使用&nbsjsp;join() 方法示例:优缺点:3

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件