学习数值方法解常微分方程的笔记

2024-04-27 12:36

本文主要是介绍学习数值方法解常微分方程的笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

工程上在满足精度要求的前提下,多用4阶龙格库塔法解常微分方程

\begin{cases} y\prime=y\\ y\left( 0 \right) =1\\ \end{cases}

取步长0.001,步数10,C语言代码如下

#include <stdio.h>
#include <math.h>// 定义微分方程系统的导数函数 f(t, y)
double f(double t, double y) {return y; 
}// 四阶龙格-库塔方法(RK4)
void rk4(double (*f)(double, double), double t0, double y0, double h, int n_steps, double *results) {int i;double k1, k2, k3, k4;results[0] = y0; // 存储初始值for (i = 1; i <= n_steps; ++i) {// 计算四个阶段的斜率k1 = f(t0 + (i - 1) * h, results[i - 1]);k2 = f(t0 + (i - 1) * h + 0.5 * h, results[i - 1] + 0.5 * h * k1);k3 = f(t0 + (i - 1) * h + 0.5 * h, results[i - 1] + 0.5 * h * k2);k4 = f(t0 + (i - 1) * h + h, results[i - 1] + h * k3);// 使用四阶龙格-库塔公式更新结果results[i] = results[i - 1] + (h / 6.0) * (k1 + 2.0 * k2 + 2.0 * k3 + k4);}
}int main() {const double t0 = 0.0;     // 初始时间const double y0 = 1.0;     // 初始状态const double h = 0.001;      // 时间步长const int n_steps = 10;   // 总迭代步数double results[n_steps + 1]; // 用于存储结果的时间序列rk4(f, t0, y0, h, n_steps, results);for(int i=0;i<n_steps;i++){printf("%.9lf %.9lf\n",results[i],results[i]-exp(i*h));}return 0;
}

结果如下

1.000000000 0.000000000
1.001000500 0.000000000
1.002002001 0.000000000
1.003004505 0.000000000
1.004008011 0.000000000
1.005012521 0.000000000
1.006018036 0.000000000
1.007024557 0.000000000
1.008032086 0.000000000
1.009040622 0.000000000

与精确值的误差几乎没有

对于多阶常微分方程,可以逐级化为一阶的

比如y''' + 2y'' + 2y' + y = 80,化为y1' = y2, y2' = y3, y3' = 80 - 2y3 - 2y2 - y1,这个80 - 2y3 - 2y2 - y1相当于一阶里的f(t,y)

#include <stdio.h>
#include <math.h>// 定义三阶常微分方程的导数函数 f(t, y, y', y'', y''')
void f(double t, double *y, double *dydt) {// 假设我们有一个三阶常微分方程:y''' + 2y'' + 2y' + y = 80// 将其转化为一阶系统:y1' = y2, y2' = y3, y3' = 80 - 2y3 - 2y2 - y1dydt[0] = y[1];dydt[1] = y[2];dydt[2] = 80 - 2 * y[2] - 2 * y[1] - y[0];
}// 四阶龙格-库塔方法(RK4)针对一阶系统
void rk4_system(void (*f)(double, double*, double*), double t0, double *y0, double h, int n_steps, double *results) {int i, j;double k1[3], k2[3], k3[3], k4[3];for (j = 0; j < 3; ++j) {results[j] = y0[j];  // 存储初始值}for (i = 1; i <= n_steps; ++i) {// 计算四个阶段的斜率f(t0 + (i - 1) * h, &results[i * 3 - 3], k1);// 计算中间状态(临时变量)double y_mid[3];for (j = 0; j < 3; ++j) {y_mid[j] = results[i * 3 - 3 + j] + 0.5 * h * k1[j];  // 修正:逐元素乘法并计算中间状态}f(t0 + (i - 1) * h + 0.5 * h, y_mid, k2);f(t0 + (i - 1) * h + 0.5 * h, y_mid, k3);  // 修正:使用中间状态计算斜率,此处重复调用f函数,需要删除其中一个// 计算下一个时间步的中间状态double next_y_mid[3];for (j = 0; j < 3; ++j) {next_y_mid[j] = results[i * 3 - 3 + j] + h * k3[j];  // 修正:逐元素乘法并计算下一个时间步的中间状态}f(t0 + (i - 1) * h + h, next_y_mid, k4);  // 修正:使用下一个时间步的中间状态计算斜率// 使用四阶龙格-库塔公式更新结果for (j = 0; j < 3; ++j) {results[i * 3 + j] = results[i * 3 - 3 + j] + (h / 6.0) * (k1[j] + 2.0 * k2[j] + 2.0 * k3[j] + k4[j]);}}
}int main() {const double t0 = 0.0;         // 初始时间double y0[] = {0.0, 0.0, 0.0};  // 初始状态const double h = 0.1;           // 时间步长const int n_steps = 100;        // 总迭代步数double results[3 * (n_steps + 1)];  // 用于存储结果的时间序列rk4_system(f, t0, y0, h, n_steps, results);for(int i=0;i<n_steps;i+=10){printf("%lf",results[3*i]);printf("\n");}return 0;
}

这篇关于学习数值方法解常微分方程的笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940517

相关文章

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制