学习数值方法解常微分方程的笔记

2024-04-27 12:36

本文主要是介绍学习数值方法解常微分方程的笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

工程上在满足精度要求的前提下,多用4阶龙格库塔法解常微分方程

\begin{cases} y\prime=y\\ y\left( 0 \right) =1\\ \end{cases}

取步长0.001,步数10,C语言代码如下

#include <stdio.h>
#include <math.h>// 定义微分方程系统的导数函数 f(t, y)
double f(double t, double y) {return y; 
}// 四阶龙格-库塔方法(RK4)
void rk4(double (*f)(double, double), double t0, double y0, double h, int n_steps, double *results) {int i;double k1, k2, k3, k4;results[0] = y0; // 存储初始值for (i = 1; i <= n_steps; ++i) {// 计算四个阶段的斜率k1 = f(t0 + (i - 1) * h, results[i - 1]);k2 = f(t0 + (i - 1) * h + 0.5 * h, results[i - 1] + 0.5 * h * k1);k3 = f(t0 + (i - 1) * h + 0.5 * h, results[i - 1] + 0.5 * h * k2);k4 = f(t0 + (i - 1) * h + h, results[i - 1] + h * k3);// 使用四阶龙格-库塔公式更新结果results[i] = results[i - 1] + (h / 6.0) * (k1 + 2.0 * k2 + 2.0 * k3 + k4);}
}int main() {const double t0 = 0.0;     // 初始时间const double y0 = 1.0;     // 初始状态const double h = 0.001;      // 时间步长const int n_steps = 10;   // 总迭代步数double results[n_steps + 1]; // 用于存储结果的时间序列rk4(f, t0, y0, h, n_steps, results);for(int i=0;i<n_steps;i++){printf("%.9lf %.9lf\n",results[i],results[i]-exp(i*h));}return 0;
}

结果如下

1.000000000 0.000000000
1.001000500 0.000000000
1.002002001 0.000000000
1.003004505 0.000000000
1.004008011 0.000000000
1.005012521 0.000000000
1.006018036 0.000000000
1.007024557 0.000000000
1.008032086 0.000000000
1.009040622 0.000000000

与精确值的误差几乎没有

对于多阶常微分方程,可以逐级化为一阶的

比如y''' + 2y'' + 2y' + y = 80,化为y1' = y2, y2' = y3, y3' = 80 - 2y3 - 2y2 - y1,这个80 - 2y3 - 2y2 - y1相当于一阶里的f(t,y)

#include <stdio.h>
#include <math.h>// 定义三阶常微分方程的导数函数 f(t, y, y', y'', y''')
void f(double t, double *y, double *dydt) {// 假设我们有一个三阶常微分方程:y''' + 2y'' + 2y' + y = 80// 将其转化为一阶系统:y1' = y2, y2' = y3, y3' = 80 - 2y3 - 2y2 - y1dydt[0] = y[1];dydt[1] = y[2];dydt[2] = 80 - 2 * y[2] - 2 * y[1] - y[0];
}// 四阶龙格-库塔方法(RK4)针对一阶系统
void rk4_system(void (*f)(double, double*, double*), double t0, double *y0, double h, int n_steps, double *results) {int i, j;double k1[3], k2[3], k3[3], k4[3];for (j = 0; j < 3; ++j) {results[j] = y0[j];  // 存储初始值}for (i = 1; i <= n_steps; ++i) {// 计算四个阶段的斜率f(t0 + (i - 1) * h, &results[i * 3 - 3], k1);// 计算中间状态(临时变量)double y_mid[3];for (j = 0; j < 3; ++j) {y_mid[j] = results[i * 3 - 3 + j] + 0.5 * h * k1[j];  // 修正:逐元素乘法并计算中间状态}f(t0 + (i - 1) * h + 0.5 * h, y_mid, k2);f(t0 + (i - 1) * h + 0.5 * h, y_mid, k3);  // 修正:使用中间状态计算斜率,此处重复调用f函数,需要删除其中一个// 计算下一个时间步的中间状态double next_y_mid[3];for (j = 0; j < 3; ++j) {next_y_mid[j] = results[i * 3 - 3 + j] + h * k3[j];  // 修正:逐元素乘法并计算下一个时间步的中间状态}f(t0 + (i - 1) * h + h, next_y_mid, k4);  // 修正:使用下一个时间步的中间状态计算斜率// 使用四阶龙格-库塔公式更新结果for (j = 0; j < 3; ++j) {results[i * 3 + j] = results[i * 3 - 3 + j] + (h / 6.0) * (k1[j] + 2.0 * k2[j] + 2.0 * k3[j] + k4[j]);}}
}int main() {const double t0 = 0.0;         // 初始时间double y0[] = {0.0, 0.0, 0.0};  // 初始状态const double h = 0.1;           // 时间步长const int n_steps = 100;        // 总迭代步数double results[3 * (n_steps + 1)];  // 用于存储结果的时间序列rk4_system(f, t0, y0, h, n_steps, results);for(int i=0;i<n_steps;i+=10){printf("%lf",results[3*i]);printf("\n");}return 0;
}

这篇关于学习数值方法解常微分方程的笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940517

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验