本文主要是介绍Spark AQE 导致的 Driver OOM问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
背景
最近在做Spark 3.1
升级 Spark 3.5
的过程中,遇到了一批SQL在运行的过程中 Driver OOM的情况,排查到是AQE开启导致的问题,再次分析记录一下,顺便了解一下Spark中指标的事件处理情况
结论
SQLAppStatusListener
类在内存中存放着 一个整个SQL查询链的所有stage以及stage的指标信息,在AQE中 一个job会被拆分成很多job,甚至几百上千的job,这个时候 stageMetrics的数据就会成百上倍的被存储在内存中,从而导致Driver OOM
。
解决方法:
- 关闭AQE
spark.sql.adaptive.enabled false
- 合并对应的PR-SPARK-45439
分析
背景知识:对于一个完整链接的sql语句来说(比如说从 读取数据源,到 数据处理操作,再到插入hive表),这可以称其为一个最小的SQL执行单元,这最小的数据执行单元在Spark内部是可以跟踪的,也就是用executionId
来进行跟踪的。
对于一个sql,举例来说 :
insert into TableA select * from TableB;
在生成 物理计划的过程中会调用 QueryExecution.assertOptimized 方法,该方法会触发eagerlyExecuteCommands调用,最终会到SQLExecution.withNewExecutionId
方法:
def assertOptimized(): Unit = optimizedPlan...lazy val commandExecuted: LogicalPlan = mode match {case CommandExecutionMode.NON_ROOT => analyzed.mapChildren(eagerlyExecuteCommands)case CommandExecutionMode.ALL => eagerlyExecuteCommands(analyzed)case CommandExecutionMode.SKIP => analyzed}...lazy val optimizedPlan: LogicalPlan = {// We need to materialize the commandExecuted here because optimizedPlan is also tracked under// the optimizing phaseassertCommandExecuted()executePhase(QueryPlanningTracker.OPTIMIZATION) {// clone the plan to avoid sharing the plan instance between different stages like analyzing,// optimizing and planning.val plan =sparkSession.sessionState.optimizer.executeAndTrack(withCachedData.clone(), tracker)// We do not want optimized plans to be re-analyzed as literals that have been constant// folded and such can cause issues during analysis. While `clone` should maintain the// `analyzed` state of the LogicalPlan, we set the plan as analyzed here as well out of// paranoia.plan.setAnalyzed()plan}def assertCommandExecuted(): Unit = commandExecuted...private def eagerlyExecuteCommands(p: LogicalPlan) = p transformDown {case c: Command =>// Since Command execution will eagerly take place here,// and in most cases be the bulk of time and effort,// with the rest of processing of the root plan being just outputting command results,// for eagerly executed commands we mark this place as beginning of execution.tracker.setReadyForExecution()val qe = sparkSession.sessionState.executePlan(c, CommandExecutionMode.NON_ROOT)val name = commandExecutionName(c)val result = QueryExecution.withInternalError(s"Eagerly executed $name failed.") {SQLExecution.withNewExecutionId(qe, Some(name)) {qe.executedPlan.executeCollect()}}
而SQLExecution.withNewExecutionId
主要的作用是设置当前计划的所属的executionId
:
val executionId = SQLExecution.nextExecutionIdsc.setLocalProperty(EXECUTION_ID_KEY, executionId.toString)
该EXECUTION_ID_KEY
的值会在JobStart的时候传递给Event,以便记录跟踪整个执行过程中的指标信息。
同时我们在方法中eagerlyExecuteCommands
看到qe.executedPlan.executeCollect()
这是具体的执行方法,针对于insert into
操作来说,物理计划就是
InsertIntoHadoopFsRelationCommand
,这里的run方法最终会流转到DAGScheduler.submitJob
方法:
eventProcessLoop.post(JobSubmitted(jobId, rdd, func2, partitions.toArray, callSite, waiter,JobArtifactSet.getActiveOrDefault(sc),Utils.cloneProperties(properties)))
最终会被DAGScheduler.handleJobSubmitted
处理,其中会发送SparkListenerJobStart
事件:
listenerBus.post(SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos,Utils.cloneProperties(properties)))
该事件会被SQLAppStatusListener
捕获,从而转到onJobStart
处理,这里有会涉及到指标信息的存储,这里我们截图出dump的内存占用情况:
可以看到 SQLAppStatusListener 的 LiveStageMetrics 占用很大,也就是 accumIdsToMetricType占用很大
那在AQE中是怎么回事呢?
我们知道再AQE中,任务会从source节点按照shuffle进行分割,从而形成单独的job,从而生成对应的shuffle指标,具体的分割以及执行代码在AdaptiveSparkPlanExec.getFinalPhysicalPlan
中,如下:
var result = createQueryStages(currentPhysicalPlan)val events = new LinkedBlockingQueue[StageMaterializationEvent]()val errors = new mutable.ArrayBuffer[Throwable]()var stagesToReplace = Seq.empty[QueryStageExec]while (!result.allChildStagesMaterialized) {currentPhysicalPlan = result.newPlanif (result.newStages.nonEmpty) {stagesToReplace = result.newStages ++ stagesToReplaceexecutionId.foreach(onUpdatePlan(_, result.newStages.map(_.plan)))// SPARK-33933: we should submit tasks of broadcast stages first, to avoid waiting// for tasks to be scheduled and leading to broadcast timeout.// This partial fix only guarantees the start of materialization for BroadcastQueryStage// is prior to others, but because the submission of collect job for broadcasting is// running in another thread, the issue is not completely resolved.val reorderedNewStages = result.newStages.sortWith {case (_: BroadcastQueryStageExec, _: BroadcastQueryStageExec) => falsecase (_: BroadcastQueryStageExec, _) => truecase _ => false}// Start materialization of all new stages and fail fast if any stages failed eagerlyreorderedNewStages.foreach { stage =>try {stage.materialize().onComplete { res =>if (res.isSuccess) {events.offer(StageSuccess(stage, res.get))} else {events.offer(StageFailure(stage, res.failed.get))}// explicitly clean up the resources in this stagestage.cleanupResources()}(AdaptiveSparkPlanExec.executionContext)
这里就是得看stage.materialize()
这个方法,这两个stage只有两类:BroadcastQueryStageExec 和 ShuffleQueryStageExec
,
这两个物理计划稍微分析一下如下:
- BroadcastQueryStageExec
数据流如下:
其中broadcast.submitBroadcastJob||\/ promise.future||\/ relationFuture||\/ child.executeCollectIterator()
promise
的设置在relationFuture
方法中,而relationFuture
会被doPrepare
调用,而submitBroadcastJob
会调用executeQuery
,从而调用doPrepare
,executeCollectIterator()
最终也会发送JobSubmitted
事件,分析和上面的一样 - ShuffleQueryStageExec
shuffle.submitShuffleJob||\/sparkContext.submitMapStage(shuffleDependency)||\/dagScheduler.submitMapStage
该submitMapStage
会发送MapStageSubmitted
事件:
eventProcessLoop.post(MapStageSubmitted(jobId, dependency, callSite, waiter, JobArtifactSet.getActiveOrDefault(sc),Utils.cloneProperties(properties)))
最终会被DAGScheduler.handleMapStageSubmitted
处理,其中会发送SparkListenerJobStart
事件:
listenerBus.post(SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos,Utils.cloneProperties(properties)))
该事件会被SQLAppStatusListener
捕获,从而转到onJobStart
处理:
private val liveExecutions = new ConcurrentHashMap[Long, LiveExecutionData]()private val stageMetrics = new ConcurrentHashMap[Int, LiveStageMetrics]()...override def onJobStart(event: SparkListenerJobStart): Unit = {val executionIdString = event.properties.getProperty(SQLExecution.EXECUTION_ID_KEY)if (executionIdString == null) {// This is not a job created by SQLreturn}val executionId = executionIdString.toLongval jobId = event.jobIdval exec = Option(liveExecutions.get(executionId))
该方法会获取事件中的executionId
,在AQE中,同一个执行单元的executionId
是一样的,所以stageMetrics
内存占用会越来越大。
而这里指标的更新是在AdaptiveSparkPlanExec.onUpdatePlan
等方法中。
这样整个事件的数据流以及问题的产生原因就应该很清楚了。
其他
为啥AQE以后多个Job还是共享一个executionId呢?因为原则上来说,如果没有开启AQE之前,一个SQL执行单元的是属于同一个Job的,开启了AQE之后,因为AQE的原因,一个Job被拆成了了多个Job,但是从逻辑上来说,还是属于同一个SQL处理单元的所以还是得归属到一次执行中。
这篇关于Spark AQE 导致的 Driver OOM问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!