对多目标粒子群算法MOPSO的理解

2024-04-27 04:08

本文主要是介绍对多目标粒子群算法MOPSO的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多目标粒子群(MOPSO)算法是由CarlosA. Coello Coello等在2004年提出来的,详细参考1。目的是将原来只能用在单目标上的粒子群算法(PSO)应用于多目标上。我们知道原来的单目标PSO流程很简单:

-->初始化粒子位置(一般都是随机生成均匀分布)

-->计算适应度值(一般是目标函数值-优化的对象)

-->初始化历史最优pbest为其本身和找出全局最优gbest

-->根据位置和速度公式进行位置和速度的更新

-->重新计算适应度

-->根据适应度更新历史最优pbest和全局最优gbest

-->收敛或者达到最大迭代次数则退出算法

速度的更新公式如下:


等式右边有三部分组成。第一部分是惯性量,是延续粒子上一次运动的矢量;第二部分是个体认知量,是向个体历史最优位置运动的量;第三部分是社会认知量,是粒子向全局最优位置运动的量。

有了速度,则位置更新自然出来了:


以上是对于多目标PSO算法的介绍。运用到多目标上去的话,出现的问题有以下几点:

  1. 如何选择pbest。我们知道对于单目标优化来说选择pbest,只需要对比一下就可以选择出哪个较优。但是对于多目标来说两个粒子的对比,并不能对比出哪个好一些。如果粒子的每个目标都要好的话,则该粒子更优。若有些更好,有些更差的话,就无法严格的说哪个好些,哪个差一些。
  2. 如何选择gbest。我们知道对于单目标在种群中只有一个最优的个体。而对于多目标来说,最优的个体有很多个。而对PSO来说,每个粒子只能选择一个作为最优的个体(领带者)。该如何选择呢?

MOPSO对于第一个问题的做法是在不能严格对比出哪个好一些时随机选择一个其中一个作为历史最优。对于第二个问题,MOPSO则在最优集里面(存档中)根据拥挤程度选择一个领导者。尽量选择不那么密集位置的粒子(在这里用到了网格法)。

MOPSO在选择领导者和对存档(也可以说是pareto临时最优断面)进行更新的时候应用了自适应网格法,详细参考2。

如何选择领带者呢?

MOPSO在存档中选择一个粒子跟随。如何选择呢?根据网格划分,假设每个网格中粒子数个,i代表第几个网格。该网格中的粒子被选择的概率为 ,即粒子越拥挤,则选择的概率越低。这是为了保证能够对未知的区域进行探索。

如何进行存档呢?

在种群更新完成之后,是如何进行存档的呢?MOPSO进行了三轮筛选。

首先,根据支配关系进行第一轮筛选,将劣解去除,剩下的加入到存档中。

其次,在存档中根据支配关系进行第二轮筛选,将劣解去除,并计算存档粒子在网格中的位置。

最后,若存档数量超过了存档阀值,则根据自适应网格进行筛选,直到阀值限额为止。重新进行网格划分。

refer:

  1. Handling multiple objectives with particle swarm optimization
  2. Approximating the non dominated front using the Pareto archivedevolution strategy

这篇关于对多目标粒子群算法MOPSO的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939479

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个