addr2line + objdump 定位crash问题

2024-04-27 03:36

本文主要是介绍addr2line + objdump 定位crash问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

背景

godbolt汇编工具

tombstone

ARM平台汇编知识

寄存器介绍

常见汇编指令

函数入参及传递返回值过程

入参顺序

变参函数

虚函数表

典型问题分析过程

Crash BackTrace

Addr2line

objdump

拓展

为什么SetCameraId函数地址偏移是+40(0x28)

参考


背景

最近在做项目的过程中,遇到了一个难搞定的crash问题,用addr2line还不能解决,需要借助objdump去解决。这里来做简单的分析记录一下。

godbolt汇编工具

godbolt可以在不同的编译器,将C/C++语言汇编成汇编语言。网站链接如下:Compiler Explorer

tombstone

当动态链接的可执行文件启动时,系统会注册多个信号处理程序,如果出现崩溃,这些处理程序会将一份基本崩溃转储信息写入 logcat,并将一个更详细的 Tombstone 文件写入 /data/tombstones/。具体而言,该文件包含崩溃进程中所有线程(而不只是捕捉到信号的线程)的堆栈轨迹、完整的内存映射,以及所有打开的文件描述符的列表。详细可以参考如下链接:https://source.android.com/docs/core/tests/debug?hl=zh-cn#debuggerd

ARM平台汇编知识

寄存器介绍

1. x0-x29为通用寄存器,运算、入参、返回值传递等过程都会用到。

AArch64 Register and Instruction Quick Start - CDOT Wiki

2. lr (Link Register)寄存器保存函数的返回地址,即一个函数调用完成后跳转回父函数,需要继续执行父函数中的指令的地址。有时也表示为x30寄存器。

3. sp (Stack Pointer)寄存器保存栈指针。

4. pc (Program Counter)寄存器保存当前正在执行的指令的地址,指令执行完后会更新为将要执行的下一条指令的地址。

5. pst (Program Status Register)程序状态寄存器,是一组用于记录处理器状态和控制处理器行为的位字段。

6. wzr/xzr :32位/64位的零寄存器。

常见汇编指令

1. ldr (load register):内存中的值保存到寄存器中,ldr w8, [sp, #12] 的作用是把栈上sp+12位置的值保存到w8寄存器中。

2. str (store register):寄存器中的值保存到内存里,str wzr, [sp, #12] 的作用是把32位零寄存器的值写入到栈上sp+12的位置。

3. add:加法运算,add w8, w8, w9 的作用是把w8 + w9的计算结果储存到w8中。

4. sub:减法运算:,sub sp, sp, #16 的作用是把sp-16的计算结果储存到sp中(移动栈指针)。

5. ret:执行此指令将跳转回lr寄存器中保存的地址。

6. bl:将此指令的顺序下一条指令地址保存到lr寄存器,并跳转到指定地址。

7. mov:寄存器间的值移动,或存储立即数到寄存器。

下面来看一个简单例子:main调用函数FuncA,在FuncA中做了一个加法并返回结果,保存在main函数栈上的res中。(clang -O0)

逐条解释汇编代码:

FuncA():                              // @FuncA()sub     sp, sp, #16         //开辟FuncA()栈空间  str     wzr, [sp, #12]  //将0保存在,栈空间 sp+12 位置处mov     w8, #1          //将1存到w8寄存器中      // =0x1str     w8, [sp, #8]    //将w8寄存器中的值,保存在 sp+8 位置处ldr     w8, [sp, #12]  //将栈上内存位置为sp+12的值 ,读到w8中ldr     w9, [sp, #8]  //将栈上内存位置为sp+8的值 ,读到w9中add     w8, w8, w9    //w8寄存器中值 + w9寄存器中的值 保存到 w8中str     w8, [sp, #4]  //将w8寄存器中的值,保存到栈上 sp+4的位置上ldr     w0, [sp, #4]  //将栈上sp+4的值,保存到 w0寄存器中add     sp, sp, #16   //退栈,归还 FuncA函数栈空间ret                   //返回
main:                                   // @mainsub     sp, sp, #32           //开辟main函数栈空间stp     x29, x30, [sp, #16]  //存储栈帧操作 // 16-byte Folded Spilladd     x29, sp, #16    //将sp+16存储于x29中bl      FuncA()        //跳转到 FuncA()stur    w0, [x29, #-4] //将w0寄存器中的值读到 x29-4处mov     w0, wzrldp     x29, x30, [sp, #16]  // 16-byte Folded Reloadadd     sp, sp, #32     //归还 main函数栈空间ret

以下是main函数和FuncA的栈空间示意图,"mem align"是为内存对齐留空。

函数入参及传递返回值过程

以一个有10个参数的函数funcA为例:

前8个参数(1、2、4、8、16、32、64、128)按顺序使用w0-w7寄存器来入参,而p9 p10这两个参数是直接保存在main的栈空间上,接下来看下funcA是怎么使用这两个参数的:

funcA在越过自己的栈空间,把位于main函数栈空间上的p9和p10复制到自己的栈空间上,然后在后续流程中使用(据我测试,GCC编译器会省掉这个复制过程,直接越过自己的栈空间取值到寄存器做加法)。同时可以看到这里w0被用来传递返回值。

入参顺序

在上一个例子里,如果把入参部分改为:

在clang编译后入参部分就会变成:

FuncA中实际入参p1~p10的值是1~10,p1 + p2 + p3 = 3,p9 + p10 = 19

而在GCC编译器下,会先运算所有++,再逐个入参,也就是例子中所有实际入参的参数都是10,相应的执行结果也会变成p1 + p2 + p3 = 30,p9 + p10 = 20;如果把参数都改成d++,clang入参是0~9,GCC则是9~0;

关于编译器间的微妙差异,各位可到https://godbolt.org/自行深入探索。

变参函数

printf是最常用的变参函数,变参函数的入参过程和普通函数类似,优先使用x0-x7寄存器,超出部分保存在父函数的栈上。

变参函数一定会将x0-x7的值入栈,第九个及其他参数则会越过自身栈空间去父函数的栈上读取。变参函数需要严格检查入参个数,对于printf,它是通过format字符串来确认入参个数的。这也是为什么当printf中漏掉参数时会输出无效值,它可能是寄存器上的值,也可能是栈空间上的某个值,取决于它具体是第几个参数。

  下面是一个自定义变参函数示例:

#include <iostream>
#include <cstdarg>
using namespace std;int sum(int count, ...) {va_list ap;va_start(ap, count);int res = 0;for (int i = 0; i < count; i++) {res += va_arg(ap, int); // 需指定类型}va_end(ap);return res;
}int main(void)
{sum(30,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30);
}

虚函数表

当一个类或者其基类的定义中存在虚函数时,这个类的实例的内存起始位置会保存一个指针指向类域的虚函数表(即,这个类的所有对象共用同一张虚函数表)。虚函数表的数据结构类似一个数组,按函数的声明顺序保存了所有虚函数的函数起始地址。

虚函数表存储在ELF的只读数据段(.rodata)、虚函数存储在代码段(.text)。

典型问题分析过程

以空指针解引用问题为例。

Crash BackTrace

从 crash 信息可以初步看出问题类型是null pointer dereference,这种问题一般借助addr2line至少可以找到是哪个空指针被解引用。用 addr2line 去解析问题 daily 包的 symbol 库(在vendor组件中下载),可以初步看下挂在哪里。

Addr2line

# 代码根目录下
./prebuilts/clang/host/linux-x86/clang-r450784e/bin/llvm-addr2line -Cipfe com.qti.stats.aec.so 000000000004fefc

addr2line的解析结果会显示目标地址对应的代码文件和行号,000000000004fefc这个crash地址对应的位置如上图,这一行有三处显性的指针解引用:两处对pAECAlgo,一处对pAlgo。

但从代码逻辑上看,能够走到这里就足以证明这两个指针都不为空。可以用objdump反汇编symbol库,进一步定位crash的地方究竟是解引用了哪个空指针。

objdump

# objdump结果输出到res.txt供后续查看
./prebuilts/clang/host/linux-x86/clang-r450784e/bin/llvm-objdump -d com.qti.stats.aec.so > res.txt

更多objdump命令参数:objdump命令解析-CSDN博客

4fefc附近反汇编片段截取如下:

pAECAlgo的类型是AECAlgorithm_Internal*,这个指针被解引用两次:其中一次是pAECAlgo->cameraId做函数入参,从结构体定义可以确认pAECAlgo->cameraId的地址偏移是68,在上面的汇编片段里只有4fef4这一行存在68这个偏移,其功能是从x19+68取值保存在w1寄存器中,而在w1未被覆盖的情况下程序就在4ff00进行了跳转,所以4fef4这一行有可能是一个入参操作。有足够的证据表明,此处x19保存的应该就是pAECAlgo。继续向上追溯的话,可以发现这里的x19来自函数入参,与代码也能对应上。

再看4fef0这一行,这里从x19+40读取内存到x0,从结构体定义可以确定pAECAlgo->pAlgo的地址偏移是40,而它保存在x0寄存器可能是调用类函数时的隐藏入参this指针。因此此处x0保存的就是pAECAlgo->pAlgo。

4fef8行从x0直接无偏移取值到x8,通过查找pAECAlgo->pAlgo的类型定义可以确定pAECAlgo->pAlgo指向的实例,其所属的类中存在虚函数,因此这行取值一定会取到类域的虚函数表指针。即x8保存了虚函数表指针。

下一行4fefc在虚函数表指针上加偏移40读取内存到x9,结合代码可以推断这可能是setCameraId的虚函数地址,通过查定义setCameraId的确是一个虚函数,符合推断。

下一行程序跳转到x9所指位置,是一个函数跳转动作,程序将跳转到setCameraId中执行。

AECAlgorithm_Internal* pAECAlgo = reinterpret_cast<AECAlgorithm_Internal*>(pAECAlgorithm);
// crash line
pAECAlgo->pAlgo->setCameraId(pAECAlgo->cameraId);// struct defines
typedef struct /** @cond */ CHIAECAlgorithm /** @endcond */
{CDKResult (*AECProcess)(CHIAECAlgorithm* pCHIAECAlgorithm, const AECAlgoInputList* pInput, AECAlgoOutputList* pOutput);CDKResult (*AECGetParam)(CHIAECAlgorithm* pCHIAECAlgorithm, AECAlgoGetParam* pGetParam);CDKResult (*AECSetParam)(CHIAECAlgorithm* pCHIAECAlgorithm, const AECAlgoSetParamList* pSetParam);CDKResult (*AECGetFeatureCapability)(CHIAECAlgorithm* pCHIAECAlgorithm, UINT64* pFeatures);VOID      (*AECDestroy)(CHIAECAlgorithm* pCHIAECAlgorithm, const AECAlgoDestroyParamList* pDestroyParams);
} CHIAECAlgorithm;struct AECAlgorithm_Internal : public CHIAECAlgorithm
{IAECXControl* pAlgo;VOID*         pLogs;BOOL          bDepthAECEnable;BOOL          bIsWarmStartDone;UINT          instanceCount;UINT          cameraId;
};

问题JIRA中贴的分析:

pAlgo是指向CAECXControl实例的指针,这个类继承于基类IAECXControl,整个解引用过程如下:

从tombStone中可以看到pAlgo(保存在x0寄存器)指向的内存,也就是IAECXControl实例所在位置附近的情况:

拓展

为什么SetCameraId函数地址偏移是+40(0x28)

单从.h文件里的声明来看,SetCameraId是第五个虚函数,在虚函数表中的偏移应该是 4 * 8 = 32

这个问题涉及到deleting destructor,由于这个类涉及继承,子类的虚函数表+0位置的是普通析构 complete object destructor,但在+8位置还有一个 deleting destructor

在这里插入实验代码段,编译后再反汇编查看结果,可以看到直接调用析构时调用了虚函数表+0位置的析构,使用delete operator时调用了虚函数表+8位置的deleting析构。

为什么需要deleting destructor

delete行为分为析构和内存释放(operator delete),正确的析构行为可以通过调用虚析构函数实现,而内存释放时不止需要知道对象的地址,还需要知道实例的实际大小(有时子类和基类实例的内存占用大小不一样)。deleting destructor可以理解为delete的一个virtual封装,里面既调用了析构函数,也调用了operator delete去释放正确的内存。

举例说明(ARM64 GCC):

x1是delete的入参之一,内存释放的size,一个Base实例的size为:

8Byte 虚函数表指针 + 4Byte int[1] + 4Byte 内存对齐留空 = 16

相较Base实例,A实例的size多了400字节的int[100],它deleting destructor中入参的size也有所不同:

参考

C++中的deleting destructor :https://zhuanlan.zhihu.com/p/26392392

Compiler Expolorer : https://godbolt.org/

寄存器 :https://blog.csdn.net/vviccc/article/details/134428965

这篇关于addr2line + objdump 定位crash问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939412

相关文章

springboot3.4和mybatis plus的版本问题的解决

《springboot3.4和mybatisplus的版本问题的解决》本文主要介绍了springboot3.4和mybatisplus的版本问题的解决,主要由于SpringBoot3.4与MyBat... 报错1:spring-boot-starter/3.4.0/spring-boot-starter-

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

解决java.lang.NullPointerException问题(空指针异常)

《解决java.lang.NullPointerException问题(空指针异常)》本文详细介绍了Java中的NullPointerException异常及其常见原因,包括对象引用为null、数组元... 目录Java.lang.NullPointerException(空指针异常)NullPointer

Android开发中gradle下载缓慢的问题级解决方法

《Android开发中gradle下载缓慢的问题级解决方法》本文介绍了解决Android开发中Gradle下载缓慢问题的几种方法,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、网络环境优化二、Gradle版本与配置优化三、其他优化措施针对android开发中Gradle下载缓慢的问

关于Nginx跨域问题及解决方案(CORS)

《关于Nginx跨域问题及解决方案(CORS)》文章主要介绍了跨域资源共享(CORS)机制及其在现代Web开发中的重要性,通过Nginx,可以简单地解决跨域问题,适合新手学习和应用,文章详细讲解了CO... 目录一、概述二、什么是 CORS?三、常见的跨域场景四、Nginx 如何解决 CORS 问题?五、基

MySQL安装时initializing database失败的问题解决

《MySQL安装时initializingdatabase失败的问题解决》本文主要介绍了MySQL安装时initializingdatabase失败的问题解决,文中通过图文介绍的非常详细,对大家的学... 目录问题页面:解决方法:问题页面:解决方法:1.勾选红框中的选项:2.将下图红框中全部改为英

Nginx启动失败:端口80被占用问题的解决方案

《Nginx启动失败:端口80被占用问题的解决方案》在Linux服务器上部署Nginx时,可能会遇到Nginx启动失败的情况,尤其是错误提示bind()to0.0.0.0:80failed,这种问题通... 目录引言问题描述问题分析解决方案1. 检查占用端口 80 的进程使用 netstat 命令使用 ss

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多