《概率机器人》学习笔记之短序一二

2024-04-27 01:58

本文主要是介绍《概率机器人》学习笔记之短序一二,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《概率机器人》目前我仅大概过了一遍第I部分和第II部分,便发现这本书结构非常清晰,主要把第一部分的基础理论学扎实,后面的第II和第III部分便不会学得头大.
A mobile robot estimating the state of a door.

第I部分

第2~4章主要介绍了构成所有算法基础的数学基础:

首先引入概率机器人技术的核心就是由传感器数据来估计状态这个思路,对概率机器人进行建模时,引出了先验概率、后验概率等概念,进而引出了本书理论的基石-贝叶斯准则.在贝叶斯准则的基础上,讨论了贝叶斯滤波算法马尔科夫假设.但这里的贝叶斯滤波器仅是介绍了一个框架,具体的概率模型并没有提及,也就是说还未交代如何实现的?所以作者紧接着便开始阐述两大类贝叶斯滤波器的具体实现方式.

贝叶斯滤波算法中的概率模型用高斯概率模型表示时,此类递归状态估计器则称为高斯滤波.线性高斯滤波中最有名的当属卡尔曼滤波(KF).但并不是所有系统都是线性化的,所以,便有了扩展卡尔曼滤波无迹卡尔曼滤波,这两种滤波放宽了线性化假设.但计算时,仍需要将非线性系统近似为线性系统进行计算,扩展卡尔曼滤波采用了泰勒级数展开的线性化技术,而无迹卡尔曼滤波采用了无迹变换.
Illustration of Kalman filters
我们知道,上述方法都依赖于确定的后验概率,于是便有了非参数化滤波技术,直方图滤波粒子滤波便出场了,这两种滤波不需要对后验密度进行强参数化假设,并且,能够很好地表示复杂的多峰置信度(想想高斯滤波的单峰).另外,贝叶斯滤波也从前面的连续贝叶斯滤波变为离散贝叶斯滤波(笔者曰:贝叶斯准则真的要好好理解,相当重要).
Different ways of extracting densities from particles
到此,本书关于贝叶斯滤波的具体实现方式已经介绍完毕,也就是我们已经知道了状态转移估计模型,但是,似乎机器人的运动控制概率模型观测模型还不知道.别急,特龙博士又要介绍新东西了.

第5章主要介绍了机器人运动模型:
根据控制量 u u u的不同,可以分类速度运动模型里程计运动模型.
速度运动模型
里程计运动模型
第6章主要介绍了机器人观测模型:
首先,从实际物理模型出发,引出了测距仪的波束模型.当然,这个波束模型有缺点,那么便提出了另一种测距仪的似然域模型,然后还提到了基于相关性特征的测量模型.
波束模型1波束模型2似然域模型
第I部分完…结构还是很清晰的,但如果只是单纯学习了这些数学工具,不知道怎么用,也是很蒙圈的.特龙博士很懂你啊,第II部分便告诉你,前面那么工具是如何组合,变成一个个定位算法的.

第II部分

第7章可以看做上述高斯滤波在定位中应用

  • 马尔科夫定位=贝叶斯滤波+马尔科夫准则
    马尔科夫定位

  • 扩展卡尔曼定位=EKF+运动模型+基于特征的测量模型

  • 无迹卡尔曼定位=UKF+运动模型+基于特征的测量模型

第8章可以看作是非参数滤波在定位中的应用

  • 栅格定位=栅格分解+直方图滤波

  • 蒙特卡罗定位=粒子滤波定位

第I部分和第II部分我仅仅是过了一遍,对其中的细节和公式推导理解得还不充分,所以打算在上述框架上重新撸一遍.

奉劝各位看这本书的朋友,一定一定要把第I部分和第II部分理解透了,磨刀不误砍柴工!

参考文献

  • 《概率机器人》.Sebastian Thrun等著
  • 官方配图

这篇关于《概率机器人》学习笔记之短序一二的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939243

相关文章

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识