Shark源码分析(六):k-means算法

2024-04-27 00:48
文章标签 算法 分析 源码 means shark

本文主要是介绍Shark源码分析(六):k-means算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Shark源码分析(六):k-means算法

k-means算法是原型聚类算法中一个非常典型的算法。关于聚类算法,我之后应该会在博客中进行详细说明。

对于整个聚类算法来说,可以分为两类:硬聚类与软聚类。对于硬聚类,每一个数据点只能属于某一个簇。对于软聚类来说,则没有这一限制。

首先还是来看一下整个聚类算法基类。

ClusteringModel类

ClusteringModel类定义在<include/shark/Models/Clustering/ClusteringModel.h>文件中。

template <class InputT, class OutputT>
class ClusteringModel : public AbstractModel<InputT, OutputT>
{
public:typedef AbstractModel<InputT, OutputT> base_type;typedef AbstractClustering<InputT> ClusteringType;typedef typename base_type::BatchInputType BatchInputType;typedef typename base_type::BatchOutputType BatchOutputType;ClusteringModel(ClusteringType* clustering): mep_clustering(clustering){ SHARK_CHECK(clustering, "[ClusteringModel] Clustering must not be NULL"); }//稍后你可能会发现AbstractClustering类其实并没有parameterVector这一函数,其子类中是含有的,那么编译起来不会报错吗//注意到这里mep_clustering的定义类型是ClusteringType*,那么它肯定会使用到多态//只要其传入的对象中定义有parameterVector这一函数即可RealVector parameterVector() const{ return mep_clustering->parameterVector(); }void setParameterVector(RealVector const& newParameters){ mep_clustering->setParameterVector(newParameters); }std::size_t numberOfParameters() const{ return mep_clustering->numberOfParameters(); }void read(InArchive& archive){ archive & *mep_clustering; }void write(OutArchive& archive) const{ archive & *mep_clustering; }using base_type::eval;//计算数据所属簇的标签void eval(BatchInputType const& patterns, BatchOutputType& outputs,  State& state)const{eval(patterns,outputs);}protected:ClusteringType* mep_clustering; // 使用的是基类指针,方便使用多态
};

AbstractClustering类

在ClusteringModel类中你可能发现了AbstractClustering这个类,那么这个类又是干什么的呢?如果你熟悉基于原型的聚类算法的话,你应该知道,其中最重要的一点就是计算各个簇的中心,Shark中将聚类中心也包装成为一个类,而AbstractClustering类就是聚类中心类的基类。

ClusteringModel类包含了AbstractModel类和AbstractClustering类。其中只是提供了一些访问的接口,主要的数据是存储在AbstractClustering类中。

该类的定义位于<include/shark/Models/Clustering/AbstractClustering.h>文件中。

template <class InputT>
class AbstractClustering : public INameable, public IParameterizable, public ISerializable
{
public:typedef InputT InputType;typedef unsigned int OutputType;typedef typename Batch<InputType>::type BatchInputType;typedef Batch<OutputType>::type BatchOutputType;enum Feature {HAS_SOFT_MEMBERSHIP = 1,};SHARK_FEATURE_INTERFACE;//表示该聚类方法是否能进行软聚类bool hasSoftMembershipFunction()const{return m_features & HAS_SOFT_MEMBERSHIP;}//返回聚类结果中簇的数目virtual std::size_t numberOfClusters() const = 0;//计算一个数据所对应的簇的标号,有batch与非batch的重载版本//这个函数是针对硬聚类来说的,对于软聚类也有同样的版本virtual unsigned int hardMembership(InputType const& pattern) const{typename Batch<InputType>::type b = Batch<InputType>::createBatch(pattern);get(b,0) = pattern;return hardMembership(b)(0); //将非batch形式转换为batch形式进行处理}// 默认语意是返回softMembership函数返回值的最大值// 可以看出,硬聚类也是建立在软聚类之上的,只是输出最可能的簇virtual BatchOutputType hardMembership(BatchInputType const& patterns) const{std::size_t numPatterns = boost::size(patterns);RealMatrix f = softMembership(patterns); // 函数返回的应该是对每个簇的隶属度SHARK_ASSERT(f.size2() > 0);SHARK_ASSERT(f.size1() == numPatterns);BatchOutputType outputs(numPa

这篇关于Shark源码分析(六):k-means算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939111

相关文章

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1