深度学习-自动求导

2024-04-26 13:04
文章标签 学习 深度 自动 求导

本文主要是介绍深度学习-自动求导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 向量链式法则
    • 标量链式法则
  • 拓展到向量
    • 例题1
    • 例题2
  • 符号求导
  • 数值求导
  • 自动求导
    • 计算图
    • 自动求导的两种模式
      • 链式法则
      • 正向累积(从x出发)
      • 反向累积(反向传递--先计算最终的函数即y)
      • 反向累积总结
  • 自动求导
  • 计算y关于x的梯度,使用requires_grad(True)
    • 计算y
  • 通过调用反向传播函数来自动计算y关于x每个分量的梯度
  • PyTorch会累积梯度,使用zero_()函数清除梯度
  • 批量中每个样本单独计算的偏导数之和
  • 将某些计算移动到记录的计算图之外
  • 即使构建函数的计算图通过Python控制流仍可以计算变量的梯度
  • 问题
    • 多个loss(损失函数)分别反向的时候是不是需要累积梯度?
    • 需要正向和反向都要算一遍吗?
    • 为什么Pytorch会默认累积梯度?
    • 为什么获取.grad前需要backward?

向量链式法则

标量链式法则

在这里插入图片描述




拓展到向量

在这里插入图片描述




例题1

在这里插入图片描述

过程:
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述





例题2

在这里插入图片描述

过程:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
然后将分解的回代




符号求导

在这里插入图片描述

数值求导

在这里插入图片描述

自动求导

自动求导计算一个函数在指定值上的导数

计算图

将代码分解为操作子
将计算表示成一个无环图
在这里插入图片描述
显示构造
在这里插入图片描述
隐式构造
在这里插入图片描述




自动求导的两种模式

链式法则

在这里插入图片描述

正向累积(从x出发)

在这里插入图片描述

反向累积(反向传递–先计算最终的函数即y)

在这里插入图片描述

这里的反向先计算z的函数
在这里插入图片描述




反向累积总结

构造计算图
前向:执行图,存储中间结果
反向:从相反方向执行图
去除不需要的枝

在这里插入图片描述

计算复杂度:O(n),n是操作子个数
通常正向和方向的代价类似
内存复杂度:O(n),因为需要存储正向的所有中间结果

正向累积:
它的内存复杂度是O(1),即不管多深我不需要存储它的结果,而反向累积则需要存储。

反向从根节点向下扫,可以保证每个节点只扫一次;
正向从叶节点向上扫,会导致上层节点可能需要被重复扫多次。

(正向中 子节点比父节点先计算,因此也无法像反向那样把本节点的计算结果传给每个子节点。)




自动求导

假设我们对函数 y=2 x T x^T xTx 求导

import torch
x = torch.arange(4.0)
print(x)

结果:在这里插入图片描述




计算y关于x的梯度,使用requires_grad(True)

import torch
x = torch.arange(4.0, requires_grad=True)
print(x.grad)

结果:在这里插入图片描述

计算y

import torch
x = torch.arange(4.0, requires_grad=True)
y = 2 * torch.dot(x, x)
print(y)

结果:在这里插入图片描述




通过调用反向传播函数来自动计算y关于x每个分量的梯度

import torch
x = torch.arange(4.0, requires_grad=True)
print(x)
y = 2 * torch.dot(x, x)
y.backward() #求导
print(x.grad) #x.grad访问导数

结果:在这里插入图片描述
y=2 x 2 x^2 x2然后使用求导函数backward()实质是y导=4x(下面验证)。

import torch
x = torch.arange(4.0, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward() #求导
print(x.grad == 4*x)

结果:在这里插入图片描述




PyTorch会累积梯度,使用zero_()函数清除梯度

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零
y = x.sum()
y.backward() #求导
print(x.grad)

因为求向量的sum()所以梯度是全1
y是标量
y是对x的的求和:y= x 1 x_1 x1+ x 2 x_2 x2+ x 3 x_3 x3+ x 4 x_4 x4
对y进行x的偏导:dy/ d x 1 dx_1 dx1,dy/ d x 2 dx_2 dx2,dy/ d x 3 dx_3 dx3,dy/ d x 4 dx_4 dx4

在这里插入图片描述




批量中每个样本单独计算的偏导数之和

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x*x #x是向量,y即向量
print(y) #输出查看
y.sum().backward() #求导
print(x.grad)

梯度(求导)清零:必须先存在梯度,如果没有y.backward()则x.grad.zero_()会报错。
结果:在这里插入图片描述




将某些计算移动到记录的计算图之外

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x * x #x是向量,y即向量
print(y) #输出查看
u = y.detach()#把y当作一个常数,而不是关于x的函数,把它做成u
z = u * x #相当于z=常数*x
z.sum().backward()
print(x.grad == u)

结果:这里的z就是为了后续求导检查是否与detach()后一致。
在这里插入图片描述


import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x * x #x是向量,y即向量
y.sum().backward()
print(x.grad == 2 * x)

结果:
在这里插入图片描述




即使构建函数的计算图通过Python控制流仍可以计算变量的梯度

import torchdef f(a):b = a * 2while b.norm() < 1000:#norm()计算张量的范数, 计算了张量 b 的L2范数b = b * 2if b.sum(): #检查 b 所有元素的总和是否非零c = b #非0的时候的操作else:c = 100 * breturn ca = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()
print(a.grad == d / a) #梯度验证

结果:在这里插入图片描述




问题

多个loss(损失函数)分别反向的时候是不是需要累积梯度?

是的

需要正向和反向都要算一遍吗?

是的

为什么Pytorch会默认累积梯度?

设计上的理念,通常一个大的批量无法一次计算出,所以分为多次,然后累加起来。

为什么获取.grad前需要backward?

不进行backward时不会计算梯度,因为计算梯度是一个很“贵”的事情

这篇关于深度学习-自动求导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937658

相关文章

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

Spring使用@Retryable实现自动重试机制

《Spring使用@Retryable实现自动重试机制》在微服务架构中,服务之间的调用可能会因为一些暂时性的错误而失败,例如网络波动、数据库连接超时或第三方服务不可用等,在本文中,我们将介绍如何在Sp... 目录引言1. 什么是 @Retryable?2. 如何在 Spring 中使用 @Retryable

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

QT实现TCP客户端自动连接

《QT实现TCP客户端自动连接》这篇文章主要为大家详细介绍了QT中一个TCP客户端自动连接的测试模型,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录版本 1:没有取消按钮 测试效果测试代码版本 2:有取消按钮测试效果测试代码版本 1:没有取消按钮 测试效果缺陷:无法手动停

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]