深度学习-自动求导

2024-04-26 13:04
文章标签 学习 深度 自动 求导

本文主要是介绍深度学习-自动求导,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 向量链式法则
    • 标量链式法则
  • 拓展到向量
    • 例题1
    • 例题2
  • 符号求导
  • 数值求导
  • 自动求导
    • 计算图
    • 自动求导的两种模式
      • 链式法则
      • 正向累积(从x出发)
      • 反向累积(反向传递--先计算最终的函数即y)
      • 反向累积总结
  • 自动求导
  • 计算y关于x的梯度,使用requires_grad(True)
    • 计算y
  • 通过调用反向传播函数来自动计算y关于x每个分量的梯度
  • PyTorch会累积梯度,使用zero_()函数清除梯度
  • 批量中每个样本单独计算的偏导数之和
  • 将某些计算移动到记录的计算图之外
  • 即使构建函数的计算图通过Python控制流仍可以计算变量的梯度
  • 问题
    • 多个loss(损失函数)分别反向的时候是不是需要累积梯度?
    • 需要正向和反向都要算一遍吗?
    • 为什么Pytorch会默认累积梯度?
    • 为什么获取.grad前需要backward?

向量链式法则

标量链式法则

在这里插入图片描述




拓展到向量

在这里插入图片描述




例题1

在这里插入图片描述

过程:
在这里插入图片描述


在这里插入图片描述


在这里插入图片描述





例题2

在这里插入图片描述

过程:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
然后将分解的回代




符号求导

在这里插入图片描述

数值求导

在这里插入图片描述

自动求导

自动求导计算一个函数在指定值上的导数

计算图

将代码分解为操作子
将计算表示成一个无环图
在这里插入图片描述
显示构造
在这里插入图片描述
隐式构造
在这里插入图片描述




自动求导的两种模式

链式法则

在这里插入图片描述

正向累积(从x出发)

在这里插入图片描述

反向累积(反向传递–先计算最终的函数即y)

在这里插入图片描述

这里的反向先计算z的函数
在这里插入图片描述




反向累积总结

构造计算图
前向:执行图,存储中间结果
反向:从相反方向执行图
去除不需要的枝

在这里插入图片描述

计算复杂度:O(n),n是操作子个数
通常正向和方向的代价类似
内存复杂度:O(n),因为需要存储正向的所有中间结果

正向累积:
它的内存复杂度是O(1),即不管多深我不需要存储它的结果,而反向累积则需要存储。

反向从根节点向下扫,可以保证每个节点只扫一次;
正向从叶节点向上扫,会导致上层节点可能需要被重复扫多次。

(正向中 子节点比父节点先计算,因此也无法像反向那样把本节点的计算结果传给每个子节点。)




自动求导

假设我们对函数 y=2 x T x^T xTx 求导

import torch
x = torch.arange(4.0)
print(x)

结果:在这里插入图片描述




计算y关于x的梯度,使用requires_grad(True)

import torch
x = torch.arange(4.0, requires_grad=True)
print(x.grad)

结果:在这里插入图片描述

计算y

import torch
x = torch.arange(4.0, requires_grad=True)
y = 2 * torch.dot(x, x)
print(y)

结果:在这里插入图片描述




通过调用反向传播函数来自动计算y关于x每个分量的梯度

import torch
x = torch.arange(4.0, requires_grad=True)
print(x)
y = 2 * torch.dot(x, x)
y.backward() #求导
print(x.grad) #x.grad访问导数

结果:在这里插入图片描述
y=2 x 2 x^2 x2然后使用求导函数backward()实质是y导=4x(下面验证)。

import torch
x = torch.arange(4.0, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward() #求导
print(x.grad == 4*x)

结果:在这里插入图片描述




PyTorch会累积梯度,使用zero_()函数清除梯度

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零
y = x.sum()
y.backward() #求导
print(x.grad)

因为求向量的sum()所以梯度是全1
y是标量
y是对x的的求和:y= x 1 x_1 x1+ x 2 x_2 x2+ x 3 x_3 x3+ x 4 x_4 x4
对y进行x的偏导:dy/ d x 1 dx_1 dx1,dy/ d x 2 dx_2 dx2,dy/ d x 3 dx_3 dx3,dy/ d x 4 dx_4 dx4

在这里插入图片描述




批量中每个样本单独计算的偏导数之和

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x*x #x是向量,y即向量
print(y) #输出查看
y.sum().backward() #求导
print(x.grad)

梯度(求导)清零:必须先存在梯度,如果没有y.backward()则x.grad.zero_()会报错。
结果:在这里插入图片描述




将某些计算移动到记录的计算图之外

import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x * x #x是向量,y即向量
print(y) #输出查看
u = y.detach()#把y当作一个常数,而不是关于x的函数,把它做成u
z = u * x #相当于z=常数*x
z.sum().backward()
print(x.grad == u)

结果:这里的z就是为了后续求导检查是否与detach()后一致。
在这里插入图片描述


import torch
x = torch.arange(4.0, dtype=torch.float32, requires_grad=True)
y = 2 * torch.dot(x, x)
y.backward()
print(x.grad)x.grad.zero_() #梯度清零,如果不清零执行y=x*x然后对y求和再求导可以通过x.grad查看得[0.,1.,4.,*.]
y = x * x #x是向量,y即向量
y.sum().backward()
print(x.grad == 2 * x)

结果:
在这里插入图片描述




即使构建函数的计算图通过Python控制流仍可以计算变量的梯度

import torchdef f(a):b = a * 2while b.norm() < 1000:#norm()计算张量的范数, 计算了张量 b 的L2范数b = b * 2if b.sum(): #检查 b 所有元素的总和是否非零c = b #非0的时候的操作else:c = 100 * breturn ca = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()
print(a.grad == d / a) #梯度验证

结果:在这里插入图片描述




问题

多个loss(损失函数)分别反向的时候是不是需要累积梯度?

是的

需要正向和反向都要算一遍吗?

是的

为什么Pytorch会默认累积梯度?

设计上的理念,通常一个大的批量无法一次计算出,所以分为多次,然后累加起来。

为什么获取.grad前需要backward?

不进行backward时不会计算梯度,因为计算梯度是一个很“贵”的事情

这篇关于深度学习-自动求导的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/937658

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

IDEA如何让控制台自动换行

《IDEA如何让控制台自动换行》本文介绍了如何在IDEA中设置控制台自动换行,具体步骤为:File-Settings-Editor-General-Console,然后勾选Usesoftwrapsin... 目录IDEA如何让控制台自http://www.chinasem.cn动换行操作流http://www

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

SpringBoot项目启动后自动加载系统配置的多种实现方式

《SpringBoot项目启动后自动加载系统配置的多种实现方式》:本文主要介绍SpringBoot项目启动后自动加载系统配置的多种实现方式,并通过代码示例讲解的非常详细,对大家的学习或工作有一定的... 目录1. 使用 CommandLineRunner实现方式:2. 使用 ApplicationRunne