【STM32+HAL+Proteus】系列学习教程---ADC(查询、中断、DMA模式下的电压采集)

本文主要是介绍【STM32+HAL+Proteus】系列学习教程---ADC(查询、中断、DMA模式下的电压采集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

实现目标

1、学会STM32CubeMX软件关于ADC的配置

2、掌握ADC三种模式(查询、中断、DMA)编程

3、具体目标:1、将开发板单片机采集到的电压值上传至上位机串口调试助手显示。


一、ADC  概述

1、什么是ADC?

ADC(Analog to Digital Converter)即模数转换器,用来将模拟信号转换为数字信号。

A/D转换过程

分辨率: A/D转换器对输入模拟量微小变化的分辨能力,通常用二进制数的有效位表示。

在最大输入电压一定时,位数越多,量化单位越小,误差越小,分辨率越高。

2、STM32F103 的ADC

(1)简介

        STM32F103 系列最多有3个ADC控制器(ADC1,ADC2,ADC3),多达18个通道,可测量16个外部和2个内部信号源。各通道的A/D转换可以单次连续扫描或间断模式执行。ADC的结果可以左对齐右对齐方式存储在16位数据寄存器中。ADC为12位,是一种逐次逼近型模拟数字转换器。

(2)ADC通道与引脚对应关系

(3)STM32分为两种组转换模式

规则通道:
        规则通道相当于你正常运行的程序,看它的名字就可以知道,很规矩,就是正常执行程序
注入通道:
        注入通道可以打断规则通道,听它的名字就知道不安分,如果在规则通道转换过程中,有注入通道进行转换,那么就要先转换完注入通道,等注入通道转换完成后,再回到规则通道的转换流程。

(4)ADC配置说明

配置选项说明:

模式设置

1、ADCs_Common_Settings  DC模式设置

 ADC_Mode_Independent      独立模式

        独立模式模式下,双ADC不能同步,每个ADC接口独立工作。所以如果不需要ADC同步或者只是用了一个ADC的时候,应该设成独立模式,多个ADC同时使用时会有其他模式,如双重ADC同步模式,两个ADC同时采集一个或多个通道,可以提高采样率

ADC常规设置

1、Data Alignment (数据对齐方式): 右对齐/左对齐

2、Scan Conversion Mode( 扫描模式 ) :

如果只是用了一个通道的话,DISABLE,果使用了多个通道的话,会自动设置为ENABLE。

3、Continuous Conversion Mode(连续转换模式) :

        设置为ENABLE,即连续转换。如果设置为DISABLE,则是单次转换。两者的区别在于连续转换直到所有的数据转换完成后才停止转换,而单次转换则只转换一次数据就停止,要再次触发转换才可以进行转换。

4、Discontinuous Conversion Mode(间断模式) 

这里只用到了1个ADC,所以这个直接不使能即可。

规则通道设置

1、Enable Regular Conversions (启用常规转换模式)    ENABLE

使能 否则无发进行下方配置

2、Number OF Conversion(转换通道数)    1
用到几个通道就设置为几,多个通道会自动使能扫描模式

3、Extenal Trigger Conversion Source (外部触发转换源)

默认采用:Regular Conversion launched by software 规则的软件触发 调用函数触发即可

Rank 转换顺序

1、多个通道时会有多个Rank,可以设定每个通道的转换顺序。

2、ADC总转换时间如下计算:

TCONV = 采样时间+ 12.5个周期   其中1周期为1/ADCCLK

        为了保证ADC转换结果的准确性,ADC的时钟最好不超过14M。当ADCCLK=14MHz(最大),采样时间为1.5周期(最快)时,TCONV =1.5+12.5=14周期=1μs。STM32的ADC最大的转换速率为1MHz,也就是说最快转换时间为1us,

注入通道设置

1、注入通道的设置,和规则通道设置差不多。

WahchDog

1、当ADC转换的模拟电压值低于低阈值或高于高阈值时,便会产生中断。阈值的高低值由ADC_LTR和ADC_HTR配置模拟看门狗。

(5)ADC的三种工作模式

1)阻塞模式(也叫查询模式);2)中断模式;3) DMA 模式

二、原理图设计

三、STM32CubeMX 配置串口重定向(printf)

此项目利用printf 打印ADC采样值,先对USART1重定向,详细教程参考前面的教程:

https://blog.csdn.net/luojuan198780/article/details/138044075

代码设计:

/* USER CODE BEGIN Includes */#include <stdio.h>/* USER CODE END Includes */
/* USER CODE BEGIN 4 *//*********************************************************
*
*重定义 fputc 函数
*
*********************************************************/
int fputc(int ch,FILE *f)
{HAL_UART_Transmit (&huart1 ,(uint8_t *)&ch,1,HAL_MAX_DELAY );return ch;
}
/* USER CODE END 4 */

四、STM32CubeMX 配置及程序设计(单通道)

1.阻塞模式(查询模式)

1.1CubeMX 配置 (单通道轮询)

配置:打开通道8,其他默认

1.2 程序设计

Step1 : 启用ADC
Step2 :   等待EOC标志位
Step3: 读取寄存器的数据 、<-- 查询环节
缺点:占用cpu的使用率

主要函数:
HAL_StatusTypeDef  HAL_ADC_Start (ADC_HandleTypeDefhadc); //打开ADC的转换通道
HAL_StatusTypeDef  HAL_ADC_Stop (ADC_HandleTypeDefhadc) //关闭ADC
HAL_StatusTypeDef  HAL_ADC_PollForConversion (ADC_HandleTypeDef*hadc,uint32_t Timeout); // 查询函数

(1)在main.c中定义一个全局变量

uint16_t ADC_Value;

(2)在main 初始化中开启ADC校准

HAL_ADCEx_Calibration_Start(&hadc1);    //AD校准

(3)在while 中编写ADC控制程序

 HAL_ADC_Start(&hadc1);     //启动ADC转换HAL_ADC_PollForConversion(&hadc1, 50);   //等待转换完成,50为最大等待时间,单位为msif(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC)){ADC_Value = HAL_ADC_GetValue(&hadc1);   //获取AD值printf("ADC值: %d \r\n",ADC_Value);printf("采样电压 : %.2f V\r\n",ADC_Value*3.3f/4096);}
HAL_Delay(1000);

2.中断模式(单通道)

2.1CubeMX 配置

配置:其打开ADC中断。他与查询模式一样,

2.2 程序设计

Step1 : 启用ADC,使能中断
Step2 :   等待EOC自动触发中断
Step3: 在中断中读取寄存器的数据
主要函数
HAL_StatusTypeDef HAL_ADC_Start_IT (ADC_HandleTypeDefhadc) //使能ADC,打开中断标志位
HAL_StatusTypeDef HAL_ADC_Stop——IT (ADC_HandleTypeDefhadc)
HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)//回调函数

 (1)在main.c中定义一个全局变量

uint16_t ADC_Value;

(2)在main函数中开启ADC中断

HAL_ADC_Start_IT(&hadc1);

(3)编写中断回调函数

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)//回调函数
{ADC_Value =  HAL_ADC_GetValue(&hadc1) * 3.3 /4096;printf("采样电压 : %.2f V\r\n",ADC_Value );
}

3.DMA 模式(单通道)

DMA 有两种模式,分别为循环模式circular和正常模式normal
circular模式:DMA 的circular模式只需要调用一次DMA 开启函数,DMA 就会持续的搬运数据,提高了数据的刷新速度,但是在circular模式下,不管ADC新的一轮数据采集是否完成,有可能直接将旧数据搬运走.
normal模式:该模式下,DMA 启动函数调用一次,DMA 通道只会搬运一次数据,这样每调一次DMA 启动函数,DMA 只会搬运一次数据,等待数据传输完成后再次开启DMA 启动函数,这样更能保证ADC数据采集的可靠性.

3.1CubeMX 配置(circular模式)

配置1:开启连续转换

配置2:添加DMA,模式选择为循环模式circular

3.1 程序设计

(1)在main.c中定义一个全局变量

 uint16_t ADC_Value=0;

(2)在main函数中开启ADC的 DMA

 HAL_ADC_Start_DMA(&hadc1,(uint32_t*)&AD_value,sizeof(AD_value));

(3)在while 中编写ADC控制程序

      printf("ADC值: %d \r\n",ADC_Value);printf("采样电压 : %.2f V\r\n",ADC_Value*3.3f/4096);HAL_Delay(100);

五、STM32CubeMX 配置及程序设计(多通道)

1.阻塞模式(多通道)

1.1CubeMX 配置 

多个通道时必须开启间断模式,并且每个间断组中只有一个通道,否则每次只能读取到每组最后一个通道的值。

1.2 程序设计

(1)在main.c中定义一个全局变量

uint16_t AD_value[2]={0};

(2)在while 中编写ADC控制程序

for(i=0;i<2;i++)
{HAL_ADC_Start(&hadc1);HAL_ADC_PollForConversion(&hadc1,10);AD_value[i]=HAL_ADC_GetValue(&hadc1);printf("i= %d;AD_value%d\r\n",i,AD_value[i]);printf("i= %d;电压值 = %.3f v\r\n",i,AD_value[i]*3.3/4096);
}
HAL_Delay(500);

2.中断模式(多通道)

        多通道情况下使用中断来读取数据理论上是可行的,但是读取的数据会混淆,即无法确定读取的数据是属于哪一个通道的,因此一般不使用。

3.DMA(多通道)

3.1CubeMX 配置 

开启DMA并采用circular模式

3.2 程序设计

(1)在main.c中定义变量

/* USER CODE BEGIN 1 */uint16_t ADC_Value1,i;uint16_t AD_Buf[2]={0};//两个通道采集数据存在这个数组里面/* USER CODE END 1 */

(2)在main函数中开启ADC的 DMA

//开启ADC的校准
HAL_ADCEx_Calibration_Start(&hadc1);
//开启ADC的DMA,采集的数据放入 AD_Buf数组
HAL_ADC_Start_DMA(&hadc1,(uint32_t *)&AD_Buf,2);

(3)在while 中编写ADC控制程序

		printf("AD1=%d\n\r",AD_Buf[0]);printf("AD2=%d\n\r",AD_Buf[1]);HAL_Delay(100);


总结

这篇关于【STM32+HAL+Proteus】系列学习教程---ADC(查询、中断、DMA模式下的电压采集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936779

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

【STM32】SPI通信-软件与硬件读写SPI

SPI通信-软件与硬件读写SPI 软件SPI一、SPI通信协议1、SPI通信2、硬件电路3、移位示意图4、SPI时序基本单元(1)开始通信和结束通信(2)模式0---用的最多(3)模式1(4)模式2(5)模式3 5、SPI时序(1)写使能(2)指定地址写(3)指定地址读 二、W25Q64模块介绍1、W25Q64简介2、硬件电路3、W25Q64框图4、Flash操作注意事项软件SPI读写W2

ural 1026. Questions and Answers 查询

1026. Questions and Answers Time limit: 2.0 second Memory limit: 64 MB Background The database of the Pentagon contains a top-secret information. We don’t know what the information is — you

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法