matlab新手快速上手6(引力搜索算法)

2024-04-26 04:36

本文主要是介绍matlab新手快速上手6(引力搜索算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        本文根据一个较为简单的matlab引力搜索算法框架详细分析蚁群算法的实现过程,对matlab新手友好,源码在文末给出

引力搜索算法简介:

        引力搜索算法是一种启发式优化算法,最初于2009年由伊朗的Esmat Rashedi、Hossein Nezamabadi-pour和Saeid Saryazdi提出。这种算法灵感来源于引力的物理现象,其中个体之间的相互吸引力和排斥力决定了它们的运动轨迹,进而影响到最终的优化结果。

        这个算法的核心思想是模拟物体之间的引力和排斥力,以在解空间中搜索最优解。具体来说,每个解(个体)都被视为具有质量的物体,它们之间的相互作用由引力和排斥力来描述。通过计算每个解受到的引力和排斥力,可以更新它们的位置,以期望获得更优的解。

引力搜索算法的一般步骤如下:

  1. 初始化:随机生成初始解(个体)的位置。
  2. 计算适应度:计算每个解的适应度,也就是目标函数的值。
  3. 计算引力和排斥力:根据每个解之间的距离和适应度,计算相互之间的引力和排斥力。
  4. 更新位置:根据引力和排斥力的作用,更新每个解的位置。
  5. 重复迭代:重复执行步骤2到步骤4,直到达到终止条件(如达到最大迭代次数)。
  6. 输出结果:输出最优解或者最优解对应的适应度值。

        引力搜索算法的性能取决于参数的选择、种群大小和迭代次数等因素。这种算法适用于解决各种优化问题,包括连续型和离散型优化问题。

开始编程:

参数与子函数定义:

%============================== 引力搜索算法 ==============================
function GSA
%--------------------------------- 共性参数 -------------------------------
NP=30;                             %种群规模
D=10;                              %变量个数
Max_N=1000;                        %限定代数
G0=100;                            %引力常数
alpha=20;                          %引力常数
K0=NP;                             %更新常数
K1=1;                              %更新常数
%--------------------------------- 个性参数 -------------------------------
MinX=-30; MaxX=30;
%-------------------------------- 设置随机数 -------------------------------
rand('state',round(sum(100*clock)));
%---------------------------------- 初始化 ---------------------------------
X=MinX+(MaxX-MinX)*rand(NP,D);
V=zeros(NP,D);
%子函数(目标函数)
function fun=ackley(X)
fun=20+exp(1)-20*exp(-0.2*(sum(X.^2)/length(X))^0.5)...-exp(sum(cos(2*pi*X))/length(X));

参数定义:

        与前几章相同,NP代表天体个数,D代表解的维度。这里rand('state',round(sum(100*clock)));这行代码表示设置随机数种子,以确保每次运行程序时生成的随机数序列是不同的。

        初始化,生成X矩阵,矩阵维度为NP行D列,元素值为(MinX,MaxX)之间的随机值。V矩阵为NP行D列的元素全为0的矩阵。

子函数(目标函数):

数学公式:

f(x_1, x_2, \ldots, x_n) = 20 + e - 20 \cdot e^{-0.2 \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}} - e^{\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)}

函数性质:

        由公式可知,此函数有多个极小值点,但最小值点在原点处,也就是当x(i)都为0时函数最小,为0。 此算法的目标是找到函数的全局最小值点,即找到使函数值最接近0的变量取值。

主函数:

%--------------------------------- 优化开始 -------------------------------
for gen=1:1:Max_NG=G0*exp(-alpha*gen/Max_N);K=round(K0+(K1-K0)*gen/Max_N);for i=1:1:NPF(i)=ackley(X(i,:));end[bestF,bestNo]=sort(F);best=min(F);worst=max(F);if best<worstm=(F-worst-eps)/(best-worst);elsem=ones(1,NP);endM=m/sum(m);
%-------开始引力搜索-------for i=1:1:NPfor k=1:1:DFt(i,k)=0;for j=1:1:Kif bestNo(j)~=itF(i,bestNo(j),k)=G*M(i)*M(bestNo(j))*...(X(bestNo(j),k)-X(i,k))/norm(X(i,:)-X(bestNo(j),:));Ft(i,k)=Ft(i,k)+rand*tF(i,bestNo(j),k);endendendendfor i=1:1:NPa(i,:)=Ft(i,:)/M(i);endV=rand(NP,D).*V+a;X=X+V;%----------------------------- 记录结果 -------------------------------GlobalMin_itr(gen)=best;if mod(gen,100)==0disp(['代数:',num2str(gen),'----最优:',num2str(best),...'----中值:',num2str(median(F)),'----均值:',...num2str(mean(F)),'----方差:',num2str(var(F))]);end
end
GlobalMin=best;
GlobalParams=X(bestNo(1),:);
plot([1:Max_N],GlobalMin_itr);
title('收敛曲线');

         第一个for循环表示循环迭代次数。

        G表示引力常数,公式为:G = G_0 \cdot e^{-\frac{alpha \cdot gen}{MaxN}}可知这是一个递减函数,也就是随着gen的增加,G值越小,也就是迭代次数越多,引力越小。

        K表示更新常数,公式为:K = \text{round}\left(K0 + \frac{(K1 - K0) \cdot gen}{MaxN}\right),round函数表示四舍五入取整,这个公式表示通过线性插值的方式,将K在迭代过程中逐步从K0变为K1。也就是K0是初始更新常数,K1是最终的更新常数。

        接下来的for循环计算每个个体的适应度的值,存储在F对应的元素中。best存储最好的适应度的值,worst存储最差的,当最小值小于最差值时,计算归一化因子m对适应度的值进行归一化,也就是最好的个体对应的m为1,最差的对应为0。

        M为整体归一化过程,M中所有元素加起来为1,这个框架中的M的计算过程有点繁琐,可以直接采用M = ((1./F)/sum(1./F))来计算,效果是一样的,下面开始引力搜索,两个for循环遍历所有个体的所有元素,先让此元素为0。再次根据K更新常数进行遍历其他天体对此天体的引力影响。

        为什么根据K更新常数进行遍历呢,由上面可知,K是随着遍历次数增多而减少,线性地从NP减少到1,也就意味着在循环开始时,遍历所有个体对当前个体的引力,随着循环次数增多,K就能舍去最小的天体引力,也就是适应度最差的个体,在循环快到最后时,将只计算前几个引力强的个体对当前天体的影响。这就是K的作用。

        接下来是代码的核心部分

        首先先了解一下引力公式:F = G\frac{Mm}{r^{2}}由引力公式可得出引力与M和m质量成正比,与r呈反比,因此下面实现通过引力更新位置的代码:

        if控制自身天体不会受自身引力影响,接下来就是计算当前天体受到前K个最优天体的引力影响后的方向与位置。tF矩阵中存储三个元素,表示第i个天体受到第bestNo(j)个天体在第k个维度的变化。G表示引力常数,G*M(i)*M(bestNo(j))表示对应上面引力公式的GMm,通过适应度表示质量,因此这个代码就实现了两个引力相互影响下的引力,这部分就实现了公式中的G\frac{Mm}{}部分。

        接下来实现r^{2}部分,由于引力与距离也有关系,距离越大引力越小那么继续编写代码

首先先理解norm函数,再matlab中,norm([3,4])将返回 5,做这个运算: \sqrt{3^2 + 4^2} = 5 。norm函数就是计算得出两个天体的欧几里得距离.

*(X(bestNo(j),k)-X(i,k))/norm(X(i,:)-X(bestNo(j),:));这里是难点 原代码中使用的是直接除以距离,虽然这样也可以,但是对比引力公式,这样这不便于理解,但是似乎效果更好,我在这里将源代码更改为此形式:

(X(bestNo(j),k)-X(i,k))/norm(X(i,:)-X(bestNo(j),:))^2;

来看此公式,/norm(X(i,:)-X(bestNo(j),:))^2;实现了/r^{2}这一部分,难点在于X(bestNo(j),k)-X(i,k)如何理解,为什么要乘以这个值呢?答案是控制引力方向。如下图所示,当不乘上这个值时,这样我们只计算出了具体的引力值大小F,但是我们需要的是将引力F映射到对应维度的力上,为了使F方向不改变,那么对应的F1和F2就要等比例缩放,因此再乘以X(bestNo(j),k)-X(i,k)这个差值就实现了将力分解到对应的维度上。

如图表示:二维状态下的力:

        继续通过Ft(i,k)更新第i个天体的第k个维度的受力,用当前维度的力加上tF,tF(i, bestNo(j), k)表示是第i个天体再第bestNo(j)个引力影响下第k维的力。再乘以随机值增加多样性,这样就得到了某个天体在前K个天体的引力影响下,在所有维度的的引力大小。

        继续看下面的代码,a(i,:)=Ft(i,:)/M(i)表示第i个天体的加速度,将时间设为单位时间,那么v = \frac{\Delta s}{\Delta t}a = \frac{\Delta v}{\Delta t},就变为v = \Delta sa = \Delta v,因此V=rand(NP,D).*V+a;就表示速度的变化,X=X+V;就表示经过距离的变化后的X。这样就实现了在引力作用下,一个单位时间的天体位置更新。后续就是结果处理,绘制图像等过程。

norm函数:

在 MATLAB 中,norm函数用于计算向量的范数。它可以计算向量的不同类型的范数,包括:

  1. 二范数(默认):向量元素的平方和的平方根。
  2. 一范数:向量元素的绝对值之和。
  3. 无穷范数:向量元素的绝对值的最大值。

语法通常是norm(X)其中X是一个向量。例如,norm([3,4])将返回 5,因为这个向量的二范数是 \sqrt{3^2 + 4^2} = 5 ,norm([3,4,5]) = \sqrt{3^2 + 4^2 + 5^2} = 7.0711

源代码:

%============================== 引力搜索算法 ==============================%                  一个伊朗人2009年提出的一个非常漂亮的算法%============================== 引力搜索算法 ==============================
function GSA
%--------------------------------- 共性参数 -------------------------------
NP=30;                             %种群规模
D=10;                              %变量个数
Max_N=10000;                        %限定代数
G0=100;                            %引力常数
alpha=20;                          %引力常数
K0=NP;                             %更新常数
K1=1;                              %更新常数
%--------------------------------- 个性参数 -------------------------------
MinX=-30; MaxX=30;
%-------------------------------- 设置随机数 -------------------------------
rand('state',round(sum(100*clock)));
%rng(round(sum(100*clock)));
%---------------------------------- 初始化 ---------------------------------
X=MinX+(MaxX-MinX)*rand(NP,D);
V=zeros(NP,D);
%--------------------------------- 优化开始 -------------------------------
for gen=1:1:Max_NG=G0*exp(-alpha*gen/Max_N);K=round(K0+(K1-K0)*gen/Max_N);for i=1:1:NPF(i)=ackley(X(i,:));end[bestF,bestNo]=sort(F);best=min(F);worst=max(F);if best<worstm=(F-worst-eps)/(best-worst);%if gen == 10000%    disp(X(bestNo,:));%endelsem=ones(1,NP);end%M=m/sum(m);M = ((1./F)/sum(1./F));%-------开始引力搜索-------for i=1:1:NPfor k=1:1:DFt(i,k)=0;for j=1:1:Kif bestNo(j)~=itF(i,bestNo(j),k)=G*M(i)*M(bestNo(j))*...(X(bestNo(j),k)-X(i,k))/norm(X(i,:)-X(bestNo(j),:));%tF(i,bestNo(j),k)=G*M(i)*M(bestNo(j))*...%(X(bestNo(j),k)-X(i,k))/norm(X(i,:)-X(bestNo(j),:))^2;Ft(i,k)=Ft(i,k)+rand*tF(i,bestNo(j),k);endendendendfor i=1:1:NPa(i,:)=Ft(i,:)/M(i);endV=rand(NP,D).*V+a;X=X+V;%----------------------------- 记录结果 -------------------------------GlobalMin_itr(gen)=best;if mod(gen,100)==0disp(['代数:',num2str(gen),'----最优:',num2str(best),...'----中值:',num2str(median(F)),'----均值:',...num2str(mean(F)),'----方差:',num2str(var(F))]);end
end
GlobalMin=best;
GlobalParams=X(bestNo(1),:);
plot([1:Max_N],GlobalMin_itr);
title('收敛曲线');function fun=ackley(X)
fun=20+exp(1)-20*exp(-0.2*(sum(X.^2)/length(X))^0.5)...-exp(sum(cos(2*pi*X))/length(X));

结语:

        此章节为作者为准备考试所复习,暂时结束,大致的经典优化算法就是这些,后续遇到更好的智能优化算法还会继续更新。

这篇关于matlab新手快速上手6(引力搜索算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936719

相关文章

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

v0.dev快速开发

探索v0.dev:次世代开发者之利器 今之技艺日新月异,开发者之工具亦随之进步不辍。v0.dev者,新兴之开发者利器也,迅速引起众多开发者之瞩目。本文将引汝探究v0.dev之基本功能与优势,助汝速速上手,提升开发之效率。 何谓v0.dev? v0.dev者,现代化之开发者工具也,旨在简化并加速软件开发之过程。其集多种功能于一体,助开发者高效编写、测试及部署代码。无论汝为前端开发者、后端开发者

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

利用Django框架快速构建Web应用:从零到上线

随着互联网的发展,Web应用的需求日益增长,而Django作为一个高级的Python Web框架,以其强大的功能和灵活的架构,成为了众多开发者的选择。本文将指导你如何从零开始使用Django框架构建一个简单的Web应用,并将其部署到线上,让世界看到你的作品。 Django简介 Django是由Adrian Holovaty和Simon Willison于2005年开发的一个开源框架,旨在简

C# double[] 和Matlab数组MWArray[]转换

C# double[] 转换成MWArray[], 直接赋值就行             MWNumericArray[] ma = new MWNumericArray[4];             double[] dT = new double[] { 0 };             double[] dT1 = new double[] { 0,2 };

CentOs7上Mysql快速迁移脚本

因公司业务需要,对原来在/usr/local/mysql/data目录下的数据迁移到/data/local/mysql/mysqlData。 原因是系统盘太小,只有20G,几下就快满了。 参考过几篇文章,基于大神们的思路,我封装成了.sh脚本。 步骤如下: 1) 先修改好/etc/my.cnf,        ##[mysqld]       ##datadir=/data/loc