使用sobel算子提取图片轮廓

2024-04-26 03:58

本文主要是介绍使用sobel算子提取图片轮廓,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码:

import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
import tensorflow as tf  myimg = mpimg.imread('img.jpg') # 读取和代码处于同一目录下的图片
plt.imshow(myimg) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
print(myimg.shape)full=np.reshape(myimg,[1,500,500,3])  
inputfull = tf.Variable(tf.constant(1.0,shape = [1, 500, 500, 3]))filter =  tf.Variable(tf.constant([[-1.0,-1.0,-1.0],  [0,0,0],  [1.0,1.0,1.0],[-2.0,-2.0,-2.0], [0,0,0],  [2.0,2.0,2.0],[-1.0,-1.0,-1.0], [0,0,0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))                                    op = tf.nn.conv2d(inputfull, filter, strides=[1, 1, 1, 1], padding='SAME') #3个通道输入,生成1个feature ma
o=tf.cast(  ((op-tf.reduce_min(op))/(tf.reduce_max(op)-tf.reduce_min(op)) ) *255 ,tf.uint8)with tf.Session() as sess:  sess.run(tf.global_variables_initializer()  )  t,f=sess.run([o,filter],feed_dict={ inputfull:full})#print(f)t=np.reshape(t,[500,500]) plt.imshow(t,cmap='Greys_r') # 显示图片plt.axis('off') # 不显示坐标轴plt.show()
def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

在学习tensorflow看到卷积这部分时,不明白这里的4个参数是什么意思,文档里面也没有具体说明。strides在官方定义中是一个一维具有四个元素的张量,其规定前后必须为1,所以我们可以改的是中间两个数,中间两个数分别代表了水平滑动和垂直滑动步长值。

    在卷积核移动逐渐扫描整体图时候,因为步长的设置问题,可能导致剩下未扫描的空间不足以提供给卷积核的,大小扫描 比如有图大小为5*5,卷积核为2*2,步长为2,卷积核扫描了两次后,剩下一个元素,不够卷积核扫描了,这个时候就在后面补零,补完后满足卷积核的扫描,这种方式就是same。如果说把刚才不足以扫描的元素位置抛弃掉,就是valid方式。

效果:

使用拉普拉斯算子处理,效果不是很明显:

import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
import tensorflow as tf  myimg = mpimg.imread('img.jpg') # 读取和代码处于同一目录下的图片
plt.imshow(myimg) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
print(myimg.shape)full=np.reshape(myimg,[1,500,500,3])  
inputfull = tf.Variable(tf.constant(1.0,shape = [1, 500, 500, 3]))
#
#filter =  tf.Variable(tf.constant([[-1.0,-1.0,-1.0],  [0,0,0],  [1.0,1.0,1.0],
#                                    [-2.0,-2.0,-2.0], [0,0,0],  [2.0,2.0,2.0],
#                                    [-1.0,-1.0,-1.0], [0,0,0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))   
filter =  tf.Variable(tf.constant([    [1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0],[1.0,1.0,1.0], [-8.0,-8.0,-8.0],[1.0,1.0,1.0],[1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))                                 op = tf.nn.conv2d(inputfull, filter, strides=[1, 1, 1, 1], padding='SAME') #3个通道输入,生成1个feature ma
o=tf.cast(  ((op-tf.reduce_min(op))/(tf.reduce_max(op)-tf.reduce_min(op)) ) *255 ,tf.uint8)with tf.Session() as sess:  sess.run(tf.global_variables_initializer()  )  t,f=sess.run([o,filter],feed_dict={ inputfull:full})#print(f)t=np.reshape(t,[500,500]) plt.imshow(t,cmap='Greys_r') # 显示图片plt.axis('off') # 不显示坐标轴plt.show()

结果:

 sobel是一阶微分算子,而拉普拉斯是二阶微分算子,所以同一张图片经过处理后,输出结果不同。

可以将模型保存为ckpt格式

import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
import tensorflow as tf  saver = tf.train.Saver()
myimg = mpimg.imread('img.jpg') # 读取和代码处于同一目录下的图片
plt.imshow(myimg) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
print(myimg.shape)full=np.reshape(myimg,[1,500,500,3])  
inputfull = tf.Variable(tf.constant(1.0,shape = [1, 500, 500, 3]))
#
#filter =  tf.Variable(tf.constant([[-1.0,-1.0,-1.0],  [0,0,0],  [1.0,1.0,1.0],
#                                    [-2.0,-2.0,-2.0], [0,0,0],  [2.0,2.0,2.0],
#                                    [-1.0,-1.0,-1.0], [0,0,0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))   
filter =  tf.Variable(tf.constant([    [1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0],[1.0,1.0,1.0], [-8.0,-8.0,-8.0],[1.0,1.0,1.0],[1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))                                 op = tf.nn.conv2d(inputfull, filter, strides=[1, 1, 1, 1], padding='SAME') #3个通道输入,生成1个feature ma
o=tf.cast(  ((op-tf.reduce_min(op))/(tf.reduce_max(op)-tf.reduce_min(op)) ) *255 ,tf.uint8)with tf.Session() as sess:sess.run(tf.global_variables_initializer()  )  t,f=sess.run([o,filter],feed_dict={ inputfull:full})#print(f)t=np.reshape(t,[500,500]) plt.imshow(t,cmap='Greys_r') # 显示图片plt.axis('off') # 不显示坐标轴plt.show()saver.save(sess, "model/linear")with tf.Session() as sess2:sess2.run(tf.global_variables_initializer())saver.restore(sess2, "model/linear")sess2.run([o,filter],feed_dict={ inputfull:full})

 保存为CKPT格式的模型:

模型有很多种格式,其它的有比如ONNX,PB等等,日后慢慢总结。

结束!

这篇关于使用sobel算子提取图片轮廓的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936651

相关文章

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin