使用sobel算子提取图片轮廓

2024-04-26 03:58

本文主要是介绍使用sobel算子提取图片轮廓,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码:

import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
import tensorflow as tf  myimg = mpimg.imread('img.jpg') # 读取和代码处于同一目录下的图片
plt.imshow(myimg) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
print(myimg.shape)full=np.reshape(myimg,[1,500,500,3])  
inputfull = tf.Variable(tf.constant(1.0,shape = [1, 500, 500, 3]))filter =  tf.Variable(tf.constant([[-1.0,-1.0,-1.0],  [0,0,0],  [1.0,1.0,1.0],[-2.0,-2.0,-2.0], [0,0,0],  [2.0,2.0,2.0],[-1.0,-1.0,-1.0], [0,0,0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))                                    op = tf.nn.conv2d(inputfull, filter, strides=[1, 1, 1, 1], padding='SAME') #3个通道输入,生成1个feature ma
o=tf.cast(  ((op-tf.reduce_min(op))/(tf.reduce_max(op)-tf.reduce_min(op)) ) *255 ,tf.uint8)with tf.Session() as sess:  sess.run(tf.global_variables_initializer()  )  t,f=sess.run([o,filter],feed_dict={ inputfull:full})#print(f)t=np.reshape(t,[500,500]) plt.imshow(t,cmap='Greys_r') # 显示图片plt.axis('off') # 不显示坐标轴plt.show()
def conv2d(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

在学习tensorflow看到卷积这部分时,不明白这里的4个参数是什么意思,文档里面也没有具体说明。strides在官方定义中是一个一维具有四个元素的张量,其规定前后必须为1,所以我们可以改的是中间两个数,中间两个数分别代表了水平滑动和垂直滑动步长值。

    在卷积核移动逐渐扫描整体图时候,因为步长的设置问题,可能导致剩下未扫描的空间不足以提供给卷积核的,大小扫描 比如有图大小为5*5,卷积核为2*2,步长为2,卷积核扫描了两次后,剩下一个元素,不够卷积核扫描了,这个时候就在后面补零,补完后满足卷积核的扫描,这种方式就是same。如果说把刚才不足以扫描的元素位置抛弃掉,就是valid方式。

效果:

使用拉普拉斯算子处理,效果不是很明显:

import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
import tensorflow as tf  myimg = mpimg.imread('img.jpg') # 读取和代码处于同一目录下的图片
plt.imshow(myimg) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
print(myimg.shape)full=np.reshape(myimg,[1,500,500,3])  
inputfull = tf.Variable(tf.constant(1.0,shape = [1, 500, 500, 3]))
#
#filter =  tf.Variable(tf.constant([[-1.0,-1.0,-1.0],  [0,0,0],  [1.0,1.0,1.0],
#                                    [-2.0,-2.0,-2.0], [0,0,0],  [2.0,2.0,2.0],
#                                    [-1.0,-1.0,-1.0], [0,0,0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))   
filter =  tf.Variable(tf.constant([    [1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0],[1.0,1.0,1.0], [-8.0,-8.0,-8.0],[1.0,1.0,1.0],[1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))                                 op = tf.nn.conv2d(inputfull, filter, strides=[1, 1, 1, 1], padding='SAME') #3个通道输入,生成1个feature ma
o=tf.cast(  ((op-tf.reduce_min(op))/(tf.reduce_max(op)-tf.reduce_min(op)) ) *255 ,tf.uint8)with tf.Session() as sess:  sess.run(tf.global_variables_initializer()  )  t,f=sess.run([o,filter],feed_dict={ inputfull:full})#print(f)t=np.reshape(t,[500,500]) plt.imshow(t,cmap='Greys_r') # 显示图片plt.axis('off') # 不显示坐标轴plt.show()

结果:

 sobel是一阶微分算子,而拉普拉斯是二阶微分算子,所以同一张图片经过处理后,输出结果不同。

可以将模型保存为ckpt格式

import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as np
import tensorflow as tf  saver = tf.train.Saver()
myimg = mpimg.imread('img.jpg') # 读取和代码处于同一目录下的图片
plt.imshow(myimg) # 显示图片
plt.axis('off') # 不显示坐标轴
plt.show()
print(myimg.shape)full=np.reshape(myimg,[1,500,500,3])  
inputfull = tf.Variable(tf.constant(1.0,shape = [1, 500, 500, 3]))
#
#filter =  tf.Variable(tf.constant([[-1.0,-1.0,-1.0],  [0,0,0],  [1.0,1.0,1.0],
#                                    [-2.0,-2.0,-2.0], [0,0,0],  [2.0,2.0,2.0],
#                                    [-1.0,-1.0,-1.0], [0,0,0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))   
filter =  tf.Variable(tf.constant([    [1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0],[1.0,1.0,1.0], [-8.0,-8.0,-8.0],[1.0,1.0,1.0],[1.0,1.0,1.0],    [1.0,1.0,1.0],  [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))                                 op = tf.nn.conv2d(inputfull, filter, strides=[1, 1, 1, 1], padding='SAME') #3个通道输入,生成1个feature ma
o=tf.cast(  ((op-tf.reduce_min(op))/(tf.reduce_max(op)-tf.reduce_min(op)) ) *255 ,tf.uint8)with tf.Session() as sess:sess.run(tf.global_variables_initializer()  )  t,f=sess.run([o,filter],feed_dict={ inputfull:full})#print(f)t=np.reshape(t,[500,500]) plt.imshow(t,cmap='Greys_r') # 显示图片plt.axis('off') # 不显示坐标轴plt.show()saver.save(sess, "model/linear")with tf.Session() as sess2:sess2.run(tf.global_variables_initializer())saver.restore(sess2, "model/linear")sess2.run([o,filter],feed_dict={ inputfull:full})

 保存为CKPT格式的模型:

模型有很多种格式,其它的有比如ONNX,PB等等,日后慢慢总结。

结束!

这篇关于使用sobel算子提取图片轮廓的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936651

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念