利用傅立叶变换进行图像处理的代码演示

2024-04-26 03:32

本文主要是介绍利用傅立叶变换进行图像处理的代码演示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面有篇文件介绍过使用DCT(离散余弦)变换进行图像处理的例子:

Matlab一探DCT/IDCT变换在图像压缩中的应用_tugouxp的专栏-CSDN博客绝大多数图像都有一个共同特征,平坦区域和内容缓慢变化的区域占据一幅图像的大部分,而细节区域和内容突变区域则占小部分。也可以说,图像中直流和低频区占大部分,高频区占小部分,zhe'yang...https://blog.csdn.net/tugouxp/article/details/117585190这里介绍用离散傅立叶变换进行图像处理的代码演示。

方法和思路:

 关于傅立叶变换的实践,可以参考这篇文章:

图说Fourier变换_tugouxp的专栏-CSDN博客_fourier变换如同熟知的泰勒级数一样,Fourierhttps://blog.csdn.net/tugouxp/article/details/113485640傅立叶变换就是将一个信号曲线分解成若干个正弦曲线,这些正弦的频率代表了原信号曲线的频率变化情况,总的来说就是对原来信号曲线上的不同频率的信号进行分门别类,同一频率下的信号被分到了一个正弦曲线上,这样就有了若干个不同频率的正弦曲线了,而这些正弦曲线中,有些是我们需要的信息,而有些是不需要的信息,我们把不重要的信息过滤掉,即可得到我们想要的信息。

代码演示:

高频滤波操作:

#-*- coding:utf-8 -*-
import numpy
import cv2
import matplotlib.pyplot as plt
import osprint (os.getcwd())#获得当前目录
print (os.path.abspath('.'))#获得当前工作目录#DFT:离散傅里叶变换'
# 2.OpenCV中的 DFT(Discrete Fourier Transform) 离散傅里叶变换
img = cv2.imread("./3.jpg")
# 0.转化为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rows, cols = gray.shape# 1.DFT离散傅里叶变换: 空域--〉频域
dft = cv2.dft(src=numpy.float32(gray), flags=cv2.DFT_COMPLEX_OUTPUT)  # src为灰度图,并且是numpy.float32类型
print(dft.shape)#两个通道# 2.中心化: 将低频移动到图像中心
fftshift = numpy.fft.fftshift(dft)
# 获取振幅谱(展示图片用): numpy.log()是为了将值限制在[0, 255]
magnitude_spectrum = numpy.log(cv2.magnitude(fftshift[:, :, 0], fftshift[:, :, 1]))# 3.滤波操作之低通滤波(去高频,保低频)
mask = numpy.zeros((rows, cols,2), dtype=numpy.uint8)
mask[(rows // 2 - 30): (rows // 2 + 30), (cols // 2 - 30): (cols // 2 + 30)] = 1
fftshift = fftshift * mask# 4.去中心化: 将低频和高频的位置还原
ifftshift = numpy.fft.ifftshift(fftshift)# 5.逆傅里叶变换: 频域--〉空域
idft = cv2.idft(ifftshift)# 6.二维向量取模(幅值)
img_back = cv2.magnitude(idft[:, :, 0], idft[:, :, 1])# 结合matplotlib展示多张图片
plt.figure(figsize=(10, 10))
plt.subplot(221), plt.imshow(gray, cmap="gray"), plt.title("Input Gray Image")
plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(magnitude_spectrum, cmap="gray"), plt.title("Magnitude Spectrum")
plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(img_back, cmap="gray"), plt.title("Image after LPF")
plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_back), plt.title("Result in JET")  # 默认cmap='jet'
plt.xticks([]), plt.yticks([])
plt.show()

lena大妈已经快70岁了,这张照片原本是刊登在playboy杂志的一张照片,而且是一张全身裸照(是不是突然很开心),估计大妈本人也没有想到自己年轻时的玉照在全世界的程序员和算法工程中间流传吧。

运行效果,

通过上面案例,我们直观地感受到了傅立叶变换在图像去噪方面的实际效果,去掉了高频信号后,无论是灰度图,还是默认色彩图,图像的轮廓都会被软化,界限变得模糊,这是由于图像的噪声以及边缘部位往往梯度变化较大,而梯度较大的地方属于高频信号,所以在去噪的同时会软化图像边缘。

接下来我们进行一个反向操作,也就是图像高通滤波操作,即去低频信号,留高频信号,看看处理后的图像最终有什么变化。我们这次以numpy中的快速傅立叶变换为例来实现图像高通滤波操作:

import numpy
import cv2
import matplotlib.pyplot as plt
import osimg = cv2.imread("./3.jpg")
# 0.转化为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
rows, cols = gray.shape
print(gray.shape)# 1.FFT快速傅里叶变换: 空域--〉频域
fft = numpy.fft.fft2(gray)  # 傅里叶变换,参数为灰度图
print(fft.shape)# 2.中心化: 将低频信号移动到图像中心
fftshift = numpy.fft.fftshift(fft)
print(numpy.min(numpy.abs(fftshift)))#绝对最低频率信号
print(numpy.max(fftshift),numpy.min(fftshift))#最高频率信号,最低频率信号
# 获取振幅谱(展示图片用): numpy.log()是为了将值压缩在[0, 255]附近
magnitude_spectrum = numpy.log(numpy.abs(fftshift))
print(numpy.max(magnitude_spectrum),numpy.min(magnitude_spectrum))# 3.滤波操作之高通滤波(去低频,保高频)
fftshift[rows // 2 - 50:rows // 2 + 50, cols // 2 - 50: cols // 2 + 50] = 0
# print(fftshift.shape)# 4.去中心化: 将剩余的低频和高频的位置还原
ifftshift = numpy.fft.ifftshift(fftshift)# 5.逆傅里叶变换: 频域--〉空域
ifft = numpy.fft.ifft2(ifftshift)
# print(ifft)# 6.二维向量取模(幅值)
img_back = numpy.abs(ifft)#结合matplotlib展示多张图片
plt.figure(figsize=(10, 10))
plt.subplot(221), plt.imshow(gray, cmap="gray"), plt.title("Input Gray Image")
plt.xticks([]), plt.yticks([])
plt.subplot(222), plt.imshow(magnitude_spectrum, cmap="gray"), plt.title("Magnitude Spectrum")
plt.xticks([]), plt.yticks([])
plt.subplot(223), plt.imshow(img_back, cmap="gray"), plt.title("Image after HPF")
plt.xticks([]), plt.yticks([])
plt.subplot(224), plt.imshow(img_back), plt.title("Result in JET")  # 默认cmap='jet'
plt.xticks([]), plt.yticks([])
plt.show()

运行效果:

频谱中的亮线 证明空域中有 与亮线方向垂直的边缘,因为频谱上每个点所代表的正弦波方向是固定的 x轴上的正弦波就是传播方向向x轴的波

空域的一条亮线 如果是竖直 就是x方向有突变 换到一维 就像一个方波 理论上是无穷多个不同频率正弦波的叠加 从小到大都有,所以x轴上所有点 即频率都有值 结果是一条亮线。

图像高通滤波的效果和低通滤波效果刚好相反,从上面案例的结果来看,高通滤波的操作会使图像失去更多的背景细节部分,只保留了图像相应的轮廓界面。这是因为背景部分的图像梯度变化相对轮廓部分的梯度变化较小,图像梯度变化较小的这部分属于低频信号,去除掉这部分低频信号,会使得图像缺少过渡,边缘显得生硬,当去除过多的低频信号时,甚至会让图像变成一副边缘轮廓图。

既然我们能够通过傅立叶变换对图像进行高通滤波或低通滤波的操作,那么同样也能对图像进行指定任意频段的滤波操作,比如中通滤波就是保留图像中间指定频段的数据,去除高频数据和低频数据的操作,而阻滞滤波刚好是去除图像中间指定频段的数据,保留高频和低频数据。

FFT变换为什么会出现亮十字?

我觉得是由于空域的图像实际是乘以了矩形窗rect(x)rect(y)的,所以在频域中心会出现sinc条纹,每条暗线实际上是如下的函数:

因为每幅图像都有一个举行的边缘突变部分,反映到频谱上就是两条垂直的亮线交于中心点,中心点是直流部分。

想要验证的话很容易,只要设计一副纯色图片,不对的缩小纯色的范围,保留边缘,看亮线何时出现以及出现的规律即可验证。


结束!

这篇关于利用傅立叶变换进行图像处理的代码演示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936600

相关文章

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

JAVA SpringBoot集成Jasypt进行加密、解密的详细过程

《JAVASpringBoot集成Jasypt进行加密、解密的详细过程》文章详细介绍了如何在SpringBoot项目中集成Jasypt进行加密和解密,包括Jasypt简介、如何添加依赖、配置加密密钥... 目录Java (SpringBoot) 集成 Jasypt 进行加密、解密 - 详细教程一、Jasyp

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

Python AST 模块实战演示

《PythonAST模块实战演示》Python的ast模块提供了一种处理Python代码的强大工具,通过解析代码生成抽象语法树(AST),可以进行代码分析、修改和生成,接下来通过本文给大家介绍Py... 目录 什么是抽象语法树(AST)️ ast 模块的核心用法1. 解析代码生成 AST2. 查看 AST

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

linux实现对.jar文件的配置文件进行修改

《linux实现对.jar文件的配置文件进行修改》文章讲述了如何使用Linux系统修改.jar文件的配置文件,包括进入文件夹、编辑文件、保存并退出编辑器,以及重新启动项目... 目录linux对.jar文件的配置文件进行修改第一步第二步 第三步第四步总结linux对.jar文件的配置文件进行修改第一步进