【智能算法应用】灰狼算法(GWO)在低照度图像增强中的应用

2024-04-25 23:28

本文主要是介绍【智能算法应用】灰狼算法(GWO)在低照度图像增强中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

目录

    • 1.算法原理
    • 2.数学模型
    • 3.结果展示
    • 4.参考文献


1.算法原理

【智能算法】灰狼算法(GWO)原理及实现

2.数学模型

对于低照度图像的增强方式可以采用非线性变换函数来对图像的灰度值进行变化,对于不同环境下质量不同的图像,可以将其分成四个区域,包括暗区、亮区、边缘区以及中心区,对于不同区域,采用的非线性变换函数也有所不同,具体的针对不同区域的变换曲线图如下所示:
在这里插入图片描述
Tubbs 提出了一种归一化非完全 Beta 函数,这种函数能够根据图像的质量的不同,自动拟合这四种非线性变换曲线:
F ( u ) = B − 1 ( α , β ) ∗ ∫ 0 u t α − 1 ( 1 − t ) β − 1 d t B ( α , β ) = ∫ 0 1 t α − 1 ( 1 − t ) β − 1 d t (1) F\big(u\big)=B^{-1}\big(\alpha,\beta\big)*\int_{0}^{\mathrm{u}}\mathrm{t}^{\alpha-1}\big(1-t\big)^{\beta-1}dt\\B\big(\alpha,\beta\big)=\int_{0}^{1}t^{\alpha-1}\big(1-t\big)^{\beta-1}dt\tag{1} F(u)=B1(α,β)0utα1(1t)β1dtB(α,β)=01tα1(1t)β1dt(1)
图像增强领域的适应度函数设计中,要兼顾图像整体与局部,以及各个区域之间的平衡,因此,为了充分体现图像增强后的各类信息要素,对适应度函数的设计公式中包含了熵、边缘信息以及方差:
f i t n e s s = α 1 ∗ H + α 2 ∗ S + α 3 ∗ log ⁡ ( s t ν ) (2) fitness=\alpha_1*H+\alpha_2*S+\alpha_3*\log(st\nu)\tag{2} fitness=α1H+α2S+α3log(stν)(2)
其中 H 表示图像中的熵,熵值越大,表示图像中所包含的信息量越大,S 表示图像的边缘内容,S越大表示图像边缘信息越多,图像对比度越好,stv 则表示图像的灰度值标准方差,stv越大图像的平均像素变化越大,并且图像的全局对比度也越好,越能通过人眼来观察到图像增强的效果。

3.结果展示

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] 袁成志.基于改进群体智能优化算法的图像处理应用研究[D].南京邮电大学,2023.

这篇关于【智能算法应用】灰狼算法(GWO)在低照度图像增强中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936083

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO