Levenberg-Marquardt (LM) 算法进行非线性拟合

2024-04-25 12:28

本文主要是介绍Levenberg-Marquardt (LM) 算法进行非线性拟合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


目录

  • 1. LM算法
  • 2. 调包实现
  • 3. LM算法实现
  • 4. 源码地址


1. LM算法

LM算法是一种非线性最小二乘优化算法,用于求解非线性最小化问题。LM主要用于解决具有误差函数的非线性最小二乘问题,其中误差函数是参数的非线性函数,需要通过调整参数使误差函数最小化。算法的基本思想是通过迭代的方式逐步调整参数,使得误差函数在参数空间中逐渐收敛到最小值。在每一次迭代中,算法通过求解一个线性方程组来更新参数。这个线性方程组由误差函数的雅可比矩阵和参数更新量构成。

LM算法的优点在于它能够快速收敛到局部最小值,并且对于初始参数的选择不太敏感。此外,算法还能够处理参数个数多于观测数据个数的问题,并且对于存在噪声的数据也比较鲁棒。

2. 调包实现

如图1所示,调用scipy.optimize的least_squares函数实现对测试函数 exp ⁡ ( − a x 2 − b y 2 ) \exp(-ax^2-by^2) exp(ax2by2)的拟合结果。目标参数为 [ 0.5 , 0.5 ] [0.5, 0.5] [0.5,0.5],初始参数设置为 [ 1.0 , 1.0 ] [1.0, 1.0] [1.0,1.0],经过22次迭代,由于观测值暂未添加噪声,所以最终拟合参数与目标参数完全一致。

在这里插入图片描述

Fig. 1. 三维目标拟合: $\exp(-ax^2-by^2)$

3. LM算法实现

使用Python对LM做了简单实现,并对测试函数 exp ⁡ ( a x 2 + b x + c ) \exp(ax^2+bx+c) exp(ax2+bx+c)进行拟合,观测值添加高斯噪声。目标参数为 [ 1.0 , 2.0 , 3.0 ] [1.0, 2.0, 3.0] [1.0,2.0,3.0],初始参数设置为 [ 3.0 , 9.0 , 6.0 ] [3.0, 9.0, 6.0] [3.0,9.0,6.0],经过41次迭代,拟合参数为 [ 2.0 , 0.6 , 3.5 ] [2.0, 0.6, 3.5] [2.0,0.6,3.5],MSE损失小于0.000001,符合拟合误差要求。图2绘制了第12(蓝),13(黄),15(绿)次迭代结果以及最终拟合结果(红)。

在这里插入图片描述

Fig. 2. 二维目标拟合: $\exp(ax^2+bx+c)$
# 部分函数代码:def Func(abc,iput):   # 需要拟合的函数,abc是包含三个参数的一个矩阵[[a],[b],[c]]a = abc[0,0]b = abc[1,0]c = abc[2,0]return np.exp(a*iput**2+b*iput+c)def Deriv(abc,iput,n):  # 对函数求偏导x1 = abc.copy()x2 = abc.copy()x1[n,0] -= 0.000001x2[n,0] += 0.000001p1 = Func(x1,iput)p2 = Func(x2,iput)d = (p2-p1)*1.0/(0.000002)return dxk_l = []  # 用来存放每次迭代的结果
while conve:mse,mse_tmp = 0,0step += 1  fx = Func(xk,h) - ymse += sum(fx**2)for j in range(3): J[:,j] = Deriv(xk,h,j) # 数值求导                                                    mse /= n  # 范围约束H = J.T*J + u*np.eye(3)   # 3*3dx = -H.I * J.T*fx        # xk_tmp = xk.copy()xk_tmp += dxfx_tmp =  Func(xk_tmp,h) - y  mse_tmp = sum(fx_tmp[:,0]**2)mse_tmp /= n#判断是否下降q = float((mse - mse_tmp)/((0.5*dx.T*(u*dx - J.T*fx))[0,0]))if q > 0:s = 1.0/3.0v = 2mse = mse_tmpxk = xk_tmptemp = 1 - pow(2*q-1,3)if s > temp:u = u*selse:u = u*tempelse:u = u*vv = 2*vxk = xk_tmpprint ("step = %d,abs(mse-lase_mse) = %.8f" %(step,abs(mse-lase_mse)))  if abs(mse-lase_mse)<0.000001:breaklase_mse = mse  # 记录上一个 mse 的位置conve -= 1xk_l.append(xk)

4. 源码地址

如果对您有用的话可以点点star哦~

https://github.com/Jurio0304/cs-math/blob/main/hw4_LM.ipynb


创作不易,麻烦点点赞和关注咯!

这篇关于Levenberg-Marquardt (LM) 算法进行非线性拟合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934679

相关文章

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL进行分片合并的实现步骤

《MySQL进行分片合并的实现步骤》分片合并是指在分布式数据库系统中,将不同分片上的查询结果进行整合,以获得完整的查询结果,下面就来具体介绍一下,感兴趣的可以了解一下... 目录环境准备项目依赖数据源配置分片上下文分片查询和合并代码实现1. 查询单条记录2. 跨分片查询和合并测试结论分片合并(Shardin

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

Nginx进行平滑升级的实战指南(不中断服务版本更新)

《Nginx进行平滑升级的实战指南(不中断服务版本更新)》Nginx的平滑升级(也称为热升级)是一种在不停止服务的情况下更新Nginx版本或添加模块的方法,这种升级方式确保了服务的高可用性,避免了因升... 目录一.下载并编译新版Nginx1.下载解压2.编译二.替换可执行文件,并平滑升级1.替换可执行文件

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

一文解密Python进行监控进程的黑科技

《一文解密Python进行监控进程的黑科技》在计算机系统管理和应用性能优化中,监控进程的CPU、内存和IO使用率是非常重要的任务,下面我们就来讲讲如何Python写一个简单使用的监控进程的工具吧... 目录准备工作监控CPU使用率监控内存使用率监控IO使用率小工具代码整合在计算机系统管理和应用性能优化中,监

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java