deep_learning_month2_week2_Optimization_methods

2024-04-25 12:18

本文主要是介绍deep_learning_month2_week2_Optimization_methods,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

deep_learning_month2_week2_Optimization_methods

标签: 机器学习深度学习

代码已上传github:
https://github.com/PerfectDemoT/my_deeplearning_homework


  • deep_learning_month2_week2_Optimization_methods
      • 这次的题目是优化算法,即使用 monmentum方法以及RMSprop方法,然后最终使用Adam方法(其实Adam算法更像是结合了前面两种算法)
      • 1. 我们先导入包
      • 2.就像之前说的,我们最后是对三种方法的训练效果进行比较。我们实现普通的参数更新操作
      • 3. 接下来我们实现mini-batch算法,另外,在实现这个算法时,我们需要了解一下这些:(批量梯度下降和随机梯度下降不严格的说,其实就是mini-batch的特殊情况)
      • 4. 这里我改变一下原来的代码顺序(注意,这一段应该放在最后,只能在预测函数前面)
        • 1. 这里写一下model函数,就是最后预测函数调用的汇总函数,先看代码,然后再讲解注意的地方
        • 2. 然后记住,跑model函数之前需要先导入数据
        • 3. 现在来看看普通的mini-batch算法,同样,这里我调换了一下顺序
      • 5. 现在我们开始写monmentum(动态梯度下降)算法
        • 1.首先进行参数初始化
        • 2. 参数初始化完毕后,现在开始用momentum算法的更新参数W , b的值(注意,这里还有v的计算)
        • 3. 好了,现在开始用momentum的mini-batch梯度下降
      • 6. 接下来看Adam优化方法(则种方法像结合monmentum方法以及RMSprop方法,所以这里没有单独谈RMSprop方法)
        • 1. 同样,先是初始化参数(全都为0)
        • 2. 接下来是更新Adam算法的参数
        • 3. 现在放大招,开始用Adma的mini-batch梯度下降(同样,不要忘记导入数据哦)
      • 7. 总结一下:

这次的题目是优化算法,即使用 monmentum方法以及RMSprop方法,然后最终使用Adam方法(其实Adam算法更像是结合了前面两种算法)

其中很重要的一点是对于 vdw v d w 以及 sdw s d w 的初始化以及迭代运算,另外还有 β1 β 1 β2 β 2 的选取(虽然我们会谈到这两个值一般可以不进行筛选,因为其实有两个”通用”的值,一般都直接用这两个值)

最后,我们还将:普通mini-batch下降 , 用momentum的mini-batch梯度下降 , 用Adma的mini-batch梯度下降。三个进行了比较(当然,这里主要是比较其对最后的预测准确度的影响,虽然平常这三种方法往往是看对训练速度的影响)

下面我们来看看实现过程:


1. 我们先导入包

import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import math
import sklearn
import sklearn.datasetsfrom opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation
from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset
from testCases import *

在这里我还是建议在自己实现时,去看看有些写好的功能函数,并且里面其实有需要改动的地方(有几个地方直接用会报错的,是矩阵的大小不对等问题,如果你自己实现的话,一定会遇到,此不赘述)

2.就像之前说的,我们最后是对三种方法的训练效果进行比较。我们实现普通的参数更新操作

#首先是更新参数的函数
# GRADED FUNCTION: update_parameters_with_gd
def update_parameters_with_gd(parameters, grads, learning_rate):"""Update parameters using one step of gradient descentArguments:parameters -- python dictionary containing your parameters to be updated:parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blgrads -- python dictionary containing your gradients to update each parameters:grads['dW' + str(l)] = dWlgrads['db' + str(l)] = dbllearning_rate -- the learning rate, scalar.Returns:parameters -- python dictionary containing your updated parameters"""L = len(parameters) // 2  # number of layers in the neural networks# Update rule for each parameterfor l in range(L):### START CODE HERE ### (approx. 2 lines)parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]### END CODE HERE ###return parameters

输出测试一下:

#下面来输出看看
parameters, grads, learning_rate = update_parameters_with_gd_test_case()parameters = update_parameters_with_gd(parameters, grads, learning_rate)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
print("=====================================")

结果是这样:

W1 = [[ 1.63535156 -0.62320365 -0.53718766][-1.07799357  0.85639907 -2.29470142]]
b1 = [[ 1.74604067][-0.75184921]]
W2 = [[ 0.32171798 -0.25467393  1.46902454][-2.05617317 -0.31554548 -0.3756023 ][ 1.1404819  -1.09976462 -0.1612551 ]]
b2 = [[-0.88020257][ 0.02561572][ 0.57539477]]

3. 接下来我们实现mini-batch算法,另外,在实现这个算法时,我们需要了解一下这些:(批量梯度下降和随机梯度下降不严格的说,其实就是mini-batch的特殊情况)

#批量梯度下降和随机梯度下降(其实也就是B=1的mini-batch下法)的伪代码在.ipynb文件里
# - ** (Batch)
#
# ``` python
# X = data_input
# Y = labels
# parameters = initialize_parameters(layers_dims)
# for i in range(0, num_iterations):
#     # Forward propagation
#     a, caches = forward_propagation(X, parameters)
#     # Compute cost.
#     cost = compute_cost(a, Y)
#     # Backward propagation.
#     grads = backward_propagation(a, caches, parameters)
#     # Update parameters.
#     parameters = update_parameters(parameters, grads)
#
# ```
## - ** Stochastic
#
# ```python
# X = data_input
# Y = labels
# parameters = initialize_parameters(layers_dims)
# for i in range(0, num_iterations):
#     for j in range(0, m):
#         # Forward propagation
#         a, caches = forward_propagation(X[:, j], parameters)
#         # Compute cost
#         cost = compute_cost(a, Y[:, j])
#         # Backward propagation
#         grads = backward_propagation(a, caches, parameters)
#         # Update parameters.
#         parameters = update_parameters(parameters, grads)
# ```

接下来我们来看看Mini-batch的代码

#下面我们来实现mini-batch
# GRADED FUNCTION: random_mini_batches
def random_mini_batches(X, Y, mini_batch_size=64, seed=0):"""Creates a list of random minibatches from (X, Y)Arguments:X -- input data, of shape (input size, number of examples)Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)mini_batch_size -- size of the mini-batches, integerReturns:mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)"""np.random.seed(seed)  # To make your "random" minibatches the same as oursm = X.shape[1]  # number of training examplesmini_batches = []# Step 1: Shuffle (X, Y) 打乱顺序permutation = list(np.random.permutation(m))shuffled_X = X[:, permutation]shuffled_Y = Y[:, permutation].reshape((1, m))# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.num_complete_minibatches = math.floor(m / mini_batch_size)  # number of mini batches of size mini_batch_size in your partitionningfor k in range(0, num_complete_minibatches):### START CODE HERE ### (approx. 2 lines)mini_batch_X = shuffled_X[: , (k * mini_batch_size) : ((k + 1) * mini_batch_size)]mini_batch_Y = shuffled_Y[: , (k * mini_batch_size) : ((k + 1) * mini_batch_size)]### END CODE HERE ###mini_batch = (mini_batch_X, mini_batch_Y)mini_batches.append(mini_batch)# Handling the end case (last mini-batch < mini_batch_size)if m % mini_batch_size != 0:### START CODE HERE ### (approx. 2 lines)mini_batch_X = shuffled_X[: , (num_complete_minibatches * mini_batch_size) : ]mini_batch_Y = shuffled_Y[: , (num_complete_minibatches * mini_batch_size) : ]### END CODE HERE ###mini_batch = (mini_batch_X, mini_batch_Y)mini_batches.append(mini_batch)return mini_batches

下面我们来简单说明一下上方算法:

上面的思路是,先把X , Y 数据集打乱,然后根据每一个 batch b a t c h 的大小,将m个数据分为 mmini_batch_size m m i n i _ b a t c h _ s i z e 个大小为 mini_catch_size m i n i _ c a t c h _ s i z e 的块,分的方法是用矩阵的划分。然后用 mini_batch m i n i _ b a t c h mini_batch_X m i n i _ b a t c h _ X mini_batch_Y m i n i _ b a t c h _ Y 装在一起,再用语句mini_batches.append(mini_batch)把所有变量装在一个 mini_batches m i n i _ b a t c h e s

现在可以测试一下:

#下面来输出看看效果
X_assess, Y_assess, mini_batch_size = random_mini_batches_test_case()
mini_batches = random_mini_batches(X_assess, Y_assess, mini_batch_size)print ("shape of the 1st mini_batch_X: " + str(mini_batches[0][0].shape))
print ("shape of the 2nd mini_batch_X: " + str(mini_batches[1][0].shape))
print ("shape of the 3rd mini_batch_X: " + str(mini_batches[2][0].shape))
print ("shape of the 1st mini_batch_Y: " + str(mini_batches[0][1].shape))
print ("shape of the 2nd mini_batch_Y: " + str(mini_batches[1][1].shape))
print ("shape of the 3rd mini_batch_Y: " + str(mini_batches[2][1].shape))
print ("mini batch sanity check: " + str(mini_batches[0][0][0][0:3]))
print("=================================================")

结果是:

shape of the 1st mini_batch_X: (12288, 64)
shape of the 2nd mini_batch_X: (12288, 64)
shape of the 3rd mini_batch_X: (12288, 20)
shape of the 1st mini_batch_Y: (1, 64)
shape of the 2nd mini_batch_Y: (1, 64)
shape of the 3rd mini_batch_Y: (1, 20)
mini batch sanity check: [ 0.90085595 -0.7612069   0.2344157 ]

4. 这里我改变一下原来的代码顺序(注意,这一段应该放在最后,只能在预测函数前面)

1. 这里写一下model函数,就是最后预测函数调用的汇总函数,先看代码,然后再讲解注意的地方
#下面来看看这个model函数
def model(X, Y, layers_dims, optimizer, learning_rate=0.0007, mini_batch_size=64, beta=0.9,beta1=0.9, beta2=0.999, epsilon=1e-8, num_epochs=10000, print_cost=True):"""3-layer neural network model which can be run in different optimizer modes.Arguments:X -- input data, of shape (2, number of examples)Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)layers_dims -- python list, containing the size of each layerlearning_rate -- the learning rate, scalar.mini_batch_size -- the size of a mini batchbeta -- Momentum hyperparameterbeta1 -- Exponential decay hyperparameter for the past gradients estimatesbeta2 -- Exponential decay hyperparameter for the past squared gradients estimatesepsilon -- hyperparameter preventing division by zero in Adam updatesnum_epochs -- number of epochsprint_cost -- True to print the cost every 1000 epochsReturns:parameters -- python dictionary containing your updated parameters"""L = len(layers_dims)  # number of layers in the neural networkscosts = []  # to keep track of the costt = 0  # initializing the counter required for Adam updateseed = 10  # For grading purposes, so that your "random" minibatches are the same as ours# Initialize parametersparameters = initialize_parameters(layers_dims)# Initialize the optimizerif optimizer == "gd":pass  # no initialization required for gradient descentelif optimizer == "momentum":v = initialize_velocity(parameters)elif optimizer == "adam":v, s = initialize_adam(parameters)# Optimization loopfor i in range(num_epochs):# Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epochseed = seed + 1minibatches = random_mini_batches(X, Y, mini_batch_size, seed)for minibatch in minibatches:# Select a minibatch(minibatch_X, minibatch_Y) = minibatch# Forward propagationa3, caches = forward_propagation(minibatch_X, parameters)# Compute costcost = compute_cost(a3, minibatch_Y)# Backward propagationgrads = backward_propagation(minibatch_X, minibatch_Y, caches)# Update parametersif optimizer == "gd":parameters = update_parameters_with_gd(parameters, grads, learning_rate)elif optimizer == "momentum":parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate)elif optimizer == "adam":t = t + 1  # Adam counterparameters, v, s = update_parameters_with_adam(parameters, grads, v, s,t, learning_rate, beta1, beta2, epsilon)# Print the cost every 1000 epochif print_cost and i % 1000 == 0:print("Cost after epoch %i: %f" % (i, cost))if print_cost and i % 100 == 0:costs.append(cost)# plot the costplt.plot(costs)plt.ylabel('cost')plt.xlabel('epochs (per 100)')plt.title("Learning rate = " + str(learning_rate))plt.show()return parameters

没错,这个函数就更新参数用的,然后由于会用于三种方法,所以里面有选择语句(比如32到38行)。
另外,还需要注意的地方是,mini-batch的前向传播与反向传播(47到69行)。47行上方的mini-batchs参数的划分,然后对每一个batch循环来更新参数paramrter。

2. 然后记住,跑model函数之前需要先导入数据
#跑一下这个model函数
#先导入数据
train_X, train_Y = load_dataset()
3. 现在来看看普通的mini-batch算法,同样,这里我调换了一下顺序

其实就是调用之前写的函数(model),直接先上代码(注意,这里要先导入数据,上方model函数的后面写了导入代码)

#普通mini-batch下降
# train 3-layer model
layers_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layers_dims, optimizer = "gd")# Predict
predictions = predict(train_X, train_Y, parameters)# Plot decision boundary
plt.title("Model with Gradient Descent optimization")
axes = plt.gca()
axes.set_xlim([-1.5,2.5])
axes.set_ylim([-1,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
print("=================================")

大家可以看到,就是调用model函数得到参数,然后调用predict函数来得到易看懂的结果,结果如下

Cost after epoch 0: 0.690736
Cost after epoch 1000: 0.685273
Cost after epoch 2000: 0.647072
Cost after epoch 3000: 0.619525
Cost after epoch 4000: 0.576584
Cost after epoch 5000: 0.607243
Cost after epoch 6000: 0.529403
Cost after epoch 7000: 0.460768
Cost after epoch 8000: 0.465586
Cost after epoch 9000: 0.464518
Accuracy: 0.796666666667

cost曲线为
mini-batch-cost

然后我们来看看边界划分:
boundary

5. 现在我们开始写monmentum(动态梯度下降)算法

1.首先进行参数初始化
# GRADED FUNCTION: initialize_velocity
def initialize_velocity(parameters):"""Initializes the velocity as a python dictionary with:- keys: "dW1", "db1", ..., "dWL", "dbL"- values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.Arguments:parameters -- python dictionary containing your parameters.parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blReturns:v -- python dictionary containing the current velocity.v['dW' + str(l)] = velocity of dWlv['db' + str(l)] = velocity of dbl"""L = len(parameters) // 2  # number of layers in the neural networksv = {}# Initialize velocityfor l in range(L):### START CODE HERE ### (approx. 2 lines)v["dW" + str(l + 1)] = np.zeros((parameters["W" + str(l + 1)]).shape)v["db" + str(l + 1)] = np.zeros((parameters["b" + str(l + 1)]).shape)### END CODE HERE ###return v

没有什么惊奇的地方,初始化时v,b都为0(就不上输出结果了,一大堆0),如果要输出看看,代码是这样的

#输出看看效果
parameters = initialize_velocity_test_case()v = initialize_velocity(parameters)
print("v[\"dW1\"] = " + str(v["dW1"]))
print("v[\"db1\"] = " + str(v["db1"]))
print("v[\"dW2\"] = " + str(v["dW2"]))
print("v[\"db2\"] = " + str(v["db2"]))
print("==================================")
2. 参数初始化完毕后,现在开始用momentum算法的更新参数W , b的值(注意,这里还有v的计算)
# GRADED FUNCTION: update_parameters_with_momentum
def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):"""Update parameters using MomentumArguments:parameters -- python dictionary containing your parameters:parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blgrads -- python dictionary containing your gradients for each parameters:grads['dW' + str(l)] = dWlgrads['db' + str(l)] = dblv -- python dictionary containing the current velocity:v['dW' + str(l)] = ...v['db' + str(l)] = ...beta -- the momentum hyperparameter, scalarlearning_rate -- the learning rate, scalarReturns:parameters -- python dictionary containing your updated parametersv -- python dictionary containing your updated velocities"""L = len(parameters) // 2  # number of layers in the neural networks# Momentum update for each parameterfor l in range(L):### START CODE HERE ### (approx. 4 lines)# compute velocitiesv["dW" + str(l + 1)] = beta * v["dW" + str(l + 1)] + (1 - beta) * grads["dW" + str(l + 1)]v["db" + str(l + 1)] = beta * v["db" + str(l + 1)] + (1 - beta) * grads["db" + str(l + 1)]# update parametersparameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * v["dW" + str(l + 1)]parameters["b" + str(l + 1)] = parameters["b" + str(l +1 )] - learning_rate * v["db" + str(l + 1)]### END CODE HERE ###return parameters, v

现在来看看执行效果

#现在来看看效果
parameters, grads, v = update_parameters_with_momentum_test_case()parameters, v = update_parameters_with_momentum(parameters, grads, v, beta = 0.9, learning_rate = 0.01)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
print("v[\"dW1\"] = " + str(v["dW1"]))
print("v[\"db1\"] = " + str(v["db1"]))
print("v[\"dW2\"] = " + str(v["dW2"]))
print("v[\"db2\"] = " + str(v["db2"]))
#其实v["dW"]啥的,都是在一次次循环里更新的,,,确实就是只要初始化为0他的更新是和parameters里的W与b一起的
print("================================")

输出长这样:

W1 = [[ 1.62544598 -0.61290114 -0.52907334][-1.07347112  0.86450677 -2.30085497]]
b1 = [[ 1.74493465][-0.76027113]]
W2 = [[ 0.31930698 -0.24990073  1.4627996 ][-2.05974396 -0.32173003 -0.38320915][ 1.13444069 -1.0998786  -0.1713109 ]]
b2 = [[-0.87809283][ 0.04055394][ 0.58207317]]
v["dW1"] = [[-0.11006192  0.11447237  0.09015907][ 0.05024943  0.09008559 -0.06837279]]
v["db1"] = [[-0.01228902][-0.09357694]]
v["dW2"] = [[-0.02678881  0.05303555 -0.06916608][-0.03967535 -0.06871727 -0.08452056][-0.06712461 -0.00126646 -0.11173103]]
v["db2"] = [[ 0.02344157][ 0.16598022][ 0.07420442]]
3. 好了,现在开始用momentum的mini-batch梯度下降

代码如下:

# train 3-layer model
layers_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layers_dims, beta = 0.9, optimizer = "momentum")# Predict
predictions = predict(train_X, train_Y, parameters)# Plot decision boundary
plt.title("Model with Momentum optimization")
axes = plt.gca()
axes.set_xlim([-1.5,2.5])
axes.set_ylim([-1,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
print("======================================")

输出长这样:

Cost after epoch 0: 0.690741
Cost after epoch 1000: 0.685341
Cost after epoch 2000: 0.647145
Cost after epoch 3000: 0.619594
Cost after epoch 4000: 0.576665
Cost after epoch 5000: 0.607324
Cost after epoch 6000: 0.529476
Cost after epoch 7000: 0.460936
Cost after epoch 8000: 0.465780
Cost after epoch 9000: 0.464740
Accuracy: 0.796666666667

cost曲线
cost曲线
然后现在看看边界划分
boundary

6. 接下来看Adam优化方法(则种方法像结合monmentum方法以及RMSprop方法,所以这里没有单独谈RMSprop方法)

1. 同样,先是初始化参数(全都为0)
# GRADED FUNCTION: initialize_adam
def initialize_adam(parameters):"""Initializes v and s as two python dictionaries with:- keys: "dW1", "db1", ..., "dWL", "dbL"- values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.Arguments:parameters -- python dictionary containing your parameters.parameters["W" + str(l)] = Wlparameters["b" + str(l)] = blReturns:v -- python dictionary that will contain the exponentially weighted average of the gradient.v["dW" + str(l)] = ...v["db" + str(l)] = ...s -- python dictionary that will contain the exponentially weighted average of the squared gradient.s["dW" + str(l)] = ...s["db" + str(l)] = ..."""L = len(parameters) // 2  # number of layers in the neural networksv = {}s = {}# Initialize v, s. Input: "parameters". Outputs: "v, s".for l in range(L):### START CODE HERE ### (approx. 4 lines)v["dW" + str(l+1)] = np.zeros(parameters["W" + str(l+1)].shape)v["db" + str(l+1)] = np.zeros(parameters["b" + str(l+1)].shape)s["dW" + str(l+1)] = np.zeros(parameters["W" + str(l+1)].shape)s["db" + str(l+1)] = np.zeros(parameters["b" + str(l+1)].shape)### END CODE HERE ###return v, s

和之前类似,输代码是(这里就不输出了,全是0):

#上面是为Adam算法进行了v["dW"],v["db"],s["dW"],s["sb"]的初始化
#来看看效果
parameters = initialize_adam_test_case()v, s = initialize_adam(parameters)
print("v[\"dW1\"] = " + str(v["dW1"]))
print("v[\"db1\"] = " + str(v["db1"]))
print("v[\"dW2\"] = " + str(v["dW2"]))
print("v[\"db2\"] = " + str(v["db2"]))
print("s[\"dW1\"] = " + str(s["dW1"]))
print("s[\"db1\"] = " + str(s["db1"]))
print("s[\"dW2\"] = " + str(s["dW2"]))
print("s[\"db2\"] = " + str(s["db2"]))
print("==============================")
2. 接下来是更新Adam算法的参数

主要是注意s参数的更新,v的更新和之前的类似

# GRADED FUNCTION: update_parameters_with_adam
def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate=0.01,beta1=0.9, beta2=0.999, epsilon=1e-8):"""Update parameters using AdamArguments:parameters -- python dictionary containing your parameters:parameters['W' + str(l)] = Wlparameters['b' + str(l)] = blgrads -- python dictionary containing your gradients for each parameters:grads['dW' + str(l)] = dWlgrads['db' + str(l)] = dblv -- Adam variable, moving average of the first gradient, python dictionarys -- Adam variable, moving average of the squared gradient, python dictionarylearning_rate -- the learning rate, scalar.beta1 -- Exponential decay hyperparameter for the first moment estimatesbeta2 -- Exponential decay hyperparameter for the second moment estimatesepsilon -- hyperparameter preventing division by zero in Adam updatesReturns:parameters -- python dictionary containing your updated parametersv -- Adam variable, moving average of the first gradient, python dictionarys -- Adam variable, moving average of the squared gradient, python dictionary"""L = len(parameters) // 2  # number of layers in the neural networksv_corrected = {}  # Initializing first moment estimate, python dictionarys_corrected = {}  # Initializing second moment estimate, python dictionary# Perform Adam update on all parametersfor l in range(L):# Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v".### START CODE HERE ### (approx. 2 lines)v["dW" + str(l + 1)] = beta1 * v["dW" + str(l + 1)] + (1 - beta1) * grads["dW" + str(l + 1)]v["db" + str(l + 1)] = beta1 * v["db" + str(l + 1)] + (1 - beta1) * grads["db" + str(l + 1)]### END CODE HERE #### Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".### START CODE HERE ### (approx. 2 lines)#下面进行偏差修正v_corrected["dW" + str(l + 1)] = v["dW" + str(l + 1)] / (1 - beta1)v_corrected["db" + str(l + 1)] = v["db" + str(l + 1)] / (1 - beta1)# 这里有个疑问,和Ng课上讲的不太一样感觉,beta2不用该有一个t次方么?### END CODE HERE #### Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".### START CODE HERE ### (approx. 2 lines)s["dW" + str(l + 1)] = beta2 * s["dW" + str(l + 1)] + (1 - beta2) * grads["dW" + str(l + 1)]**2s["db" + str(l + 1)] = beta2 * s["db" + str(l + 1)] + (1 - beta2) * grads["db" + str(l + 1)]**2### END CODE HERE #### Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".### START CODE HERE ### (approx. 2 lines)s_corrected["dW" + str(l + 1)] = s["dW" + str(l + 1)] / (1 - beta2)s_corrected["db" + str(l + 1)] = s["db" + str(l + 1)] / (1 - beta2)#这里有个疑问,和Ng课上讲的不太一样感觉,beta2不用该有一个t次方么?### END CODE HERE #### Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".### START CODE HERE ### (approx. 2 lines)parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * (v_corrected["dW" + str(l + 1)] / (np.sqrt(s_corrected["dW" + str(l + 1)]) + epsilon))parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * (v_corrected["db" + str(l + 1)] / (np.sqrt(s_corrected["db" + str(l + 1)]) + epsilon))### END CODE HERE ###return parameters, v, s

另外说明一点,对于42,43,55,56行是在进行偏差修正。
还有就是,就像我57行中注释的一样,在课程中讲到过有一个beta2^t,但是这里却没有这个,我还没有找到为什么,但是由于课程中页提到,偏差修正很多时候不进行,对最后结果一般也没有太大影响,所以这里我貌似没有发现什么问题。

现在我们来看看检测代码:

#测试一下
parameters, grads, v, s = update_parameters_with_adam_test_case()
parameters, v, s  = update_parameters_with_adam(parameters, grads, v, s, t = 2)print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
print("v[\"dW1\"] = " + str(v["dW1"]))
print("v[\"db1\"] = " + str(v["db1"]))
print("v[\"dW2\"] = " + str(v["dW2"]))
print("v[\"db2\"] = " + str(v["db2"]))
print("s[\"dW1\"] = " + str(s["dW1"]))
print("s[\"db1\"] = " + str(s["db1"]))
print("s[\"dW2\"] = " + str(s["dW2"]))
print("s[\"db2\"] = " + str(s["db2"]))
print("=============================")

测试结果是这样:

W1 = [[ 1.63434536 -0.62175641 -0.53817175][-1.08296862  0.85540763 -2.2915387 ]]
b1 = [[ 1.75481176][-0.7512069 ]]
W2 = [[ 0.3290391  -0.25937038  1.47210794][-2.05014071 -0.3124172  -0.37405435][ 1.14376944 -1.08989128 -0.16242821]]
b2 = [[-0.88785842][ 0.03221375][ 0.57281521]]
v["dW1"] = [[-0.11006192  0.11447237  0.09015907][ 0.05024943  0.09008559 -0.06837279]]
v["db1"] = [[-0.01228902][-0.09357694]]
v["dW2"] = [[-0.02678881  0.05303555 -0.06916608][-0.03967535 -0.06871727 -0.08452056][-0.06712461 -0.00126646 -0.11173103]]
v["db2"] = [[ 0.02344157][ 0.16598022][ 0.07420442]]
s["dW1"] = [[ 0.00121136  0.00131039  0.00081287][ 0.0002525   0.00081154  0.00046748]]
s["db1"] = [[  1.51020075e-05][  8.75664434e-04]]
s["dW2"] = [[  7.17640232e-05   2.81276921e-04   4.78394595e-04][  1.57413361e-04   4.72206320e-04   7.14372576e-04][  4.50571368e-04   1.60392066e-07   1.24838242e-03]]
s["db2"] = [[  5.49507194e-05][  2.75494327e-03][  5.50629536e-04]]
3. 现在放大招,开始用Adma的mini-batch梯度下降(同样,不要忘记导入数据哦)
# train 3-layer model
layers_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layers_dims, optimizer = "adam")# Predict
predictions = predict(train_X, train_Y, parameters)# Plot decision boundary
plt.title("Model with Adam optimization")
axes = plt.gca()
axes.set_xlim([-1.5,2.5])
axes.set_ylim([-1,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

结果是这样:

Cost after epoch 0: 0.690468
Cost after epoch 1000: 0.325328
Cost after epoch 2000: 0.223535
Cost after epoch 3000: 0.109833
Cost after epoch 4000: 0.140489
Cost after epoch 5000: 0.111570
Cost after epoch 6000: 0.128548
Cost after epoch 7000: 0.036306
Cost after epoch 8000: 0.128252
Cost after epoch 9000: 0.211592
Accuracy: 0.943333333333

cost曲线
cost

边界图片
boundary
感叹一下,这个优化方法真的让分类效果好了不止一点点。

7. 总结一下:

三种方法,分类准确度一个比一个高,最后,Adam算法胜出,前两个都是:
0.796666666667
到了Adam算法,直接飙升到:
0.943333333333
可见优化算法不止对训练速度有大大的改善,还对分类效果有不小的影响。

这篇关于deep_learning_month2_week2_Optimization_methods的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934659

相关文章

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

简单的Q-learning|小明的一维世界(3)

简单的Q-learning|小明的一维世界(1) 简单的Q-learning|小明的一维世界(2) 一维的加速度世界 这个世界,小明只能控制自己的加速度,并且只能对加速度进行如下三种操作:增加1、减少1、或者不变。所以行动空间为: { u 1 = − 1 , u 2 = 0 , u 3 = 1 } \{u_1=-1, u_2=0, u_3=1\} {u1​=−1,u2​=0,u3​=1}

简单的Q-learning|小明的一维世界(2)

上篇介绍了小明的一维世界模型 、Q-learning的状态空间、行动空间、奖励函数、Q-table、Q table更新公式、以及从Q值导出策略的公式等。最后给出最简单的一维位置世界的Q-learning例子,从给出其状态空间、行动空间、以及稠密与稀疏两种奖励函数的设置方式。下面将继续深入,GO! 一维的速度世界 这个世界,小明只能控制自己的速度,并且只能对速度进行如下三种操作:增加1、减

【VueJS】深入理解 computed 和 methods 方法

前言   模板内的表达式是非常便利的,但是它们实际上只用于简单的运算。在模板中放入太多的逻辑会让模板过重且难以维护。例如: <div id="example">{{ message.split('').reverse().join('') }}</div> computed 方法   所以引入了计算属性computed,将复杂的逻辑放入计算中进行处理,同时computed有缓存功能,

Deep Ocr

1.圈出内容,文本那里要有内容.然后你保存,并'导出数据集'. 2.找出deep_ocr_recognition_training_workflow.hdev 文件.修改“DatasetFilename := 'Test.hdict'” 310行 write_deep_ocr (DeepOcrHandle, BestModelDeepOCRFilename) 3.推理test.hdev

Vue3,格式化时间的函数作为组件的方法(methods)、计算属性(computed properties)来使用

确实,在Vue3组件中,你可以将这些用于格式化时间的函数作为组件的方法(methods)来使用,或者更优雅地,作为计算属性(computed properties)来使用,特别是当你需要基于响应式数据动态地格式化时间时。 作为方法(Methods) 在Vue组件的methods对象中定义这些函数,并在模板或其他方法中调用它们。 <template> <div> <p>Formatted

Learning Memory-guided Normality for Anomaly Detection——学习记忆引导的常态异常检测

又是一篇在自编码器框架中研究使用记忆模块的论文,可以看做19年的iccv的论文的衍生,在我的博客中对19年iccv这篇论文也做了简单介绍。韩国人写的,应该是吧,这名字听起来就像。 摘要abstract 我们解决异常检测的问题,即检测视频序列中的异常事件。基于卷积神经网络的异常检测方法通常利用代理任务(如重建输入视频帧)来学习描述正常情况的模型,而在训练时看不到异常样本,并在测试时使用重建误

Learning Temporal Regularity in Video Sequences——视频序列的时间规则性学习

Learning Temporal Regularity in Video Sequences CVPR2016 无监督视频异常事件检测早期工作 摘要 由于对“有意义”的定义不明确以及场景混乱,因此在较长的视频序列中感知有意义的活动是一个具有挑战性的问题。我们通过在非常有限的监督下使用多种来源学习常规运动模式的生成模型(称为规律性)来解决此问题。体来说,我们提出了两种基于自动编码器的方法,以

COD论文笔记 Adaptive Guidance Learning for Camouflaged Object Detection

论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点如下: 动机: 论文的核心动机是解决伪装目标检测(COD)中的挑战性任务。伪装目标检测旨在识别和分割那些在视觉上与周围环境高度相似的目标,这对于计算机视觉来说是非常困难的任务。尽管深度学习方法在该领域取得了一定进展,但现有方法仍面临有效分离目标和背景的难题,尤其是在伪装目标与背景特征高度相似的情况下。 现有方法的不足之处: 过于

One-Shot Imitation Learning

发表时间:NIPS2017 论文链接:https://readpaper.com/pdf-annotate/note?pdfId=4557560538297540609&noteId=2424799047081637376 作者单位:Berkeley AI Research Lab, Work done while at OpenAI Yan Duan†§ , Marcin Andrychow