本文主要是介绍opencv识别两个网球,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
#include "cxcore.h"
#include "cv.h"
#include "highgui.h"
#include "iostream"
using namespace std;
// 内轮廓填充
// 参数:
// 1. pBinary: 输入二值图像,单通道,位深IPL_DEPTH_8U。
// 2. dAreaThre: 面积阈值,当内轮廓面积小于等于dAreaThre时,进行填充。
void FillInternalContours(IplImage *pBinary, double dAreaThre)
{
double dConArea;
CvSeq *pContour = NULL;
CvSeq *pConInner = NULL;
CvMemStorage *pStorage = NULL;
IplImage *dst = cvCreateImage(cvGetSize(pBinary), 8, 3);
// 执行条件
if (pBinary)
{
// 查找所有轮廓
pStorage = cvCreateMemStorage(0);
cvFindContours(pBinary, pStorage, &pContour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
// 填充所有轮廓
cvDrawContours(pBinary, pContour, CV_RGB(255, 255, 255), CV_RGB(255, 255, 255), 2, CV_FILLED, 8, cvPoint(0, 0));
// 外轮廓循环
int wai = 0;
int nei = 0;
double minarea=1000;//这里需要修改参数!
for (; pContour != NULL; pContour = pContour->h_next)
{
wai++;
// 内轮廓循环
double tmparea = fabs(cvContourArea(pContour));
printf("%f\n", tmparea);
cout<<endl;
if(tmparea < minarea)
{
cvSeqRemove(pContour, 0); // 删除面积小于设定值的轮廓
continue;
}
CvRect aRect = cvBoundingRect( pContour, 0 );
cout<<"轮廓的高度为:"<<aRect.width<<"轮廓的宽度为"<<aRect.height<<endl;
cout<<"轮廓的宽高比例为:"<< aRect.width/aRect.height <<endl;
//if ((aRect.width/aRect.height)<1)
//{
// cvSeqRemove(pContour, 0); //删除宽高比例小于设定值的轮廓
// continue;
//}
for (pConInner = pContour->v_next; pConInner != NULL; pConInner = pConInner->h_next)
{
nei++;
// 内轮廓面积
dConArea = fabs(cvContourArea(pConInner, CV_WHOLE_SEQ));
cout<<"内轮廓的面积为:"<<endl;
printf("%f\n", dConArea);
}
CvRect rect = cvBoundingRect(pContour,0);
cvRectangle(dst, cvPoint(rect.x, rect.y), cvPoint(rect.x + rect.width, rect.y + rect.height),CV_RGB(255,0,0), 1, 8, 0);
cout<<"rect.x"<<rect.x<<"rect.y"<<rect.y<<endl;
cout<<"rect.x + rect.width"<<rect.x + rect.width<<"rect.y + rect.height"<<rect.y + rect.height<<endl;
}
printf("wai = %d, nei = %d", wai, nei);
cvReleaseMemStorage(&pStorage);
pStorage = NULL;
}
cvNamedWindow("dst");
cvShowImage("dst", dst);
}
int Otsu(IplImage* src)
{
int height=src->height;
int width=src->width;
//histogram
float histogram[256] = {0};
for(int i=0; i < height; i++)
{
unsigned char* p=(unsigned char*)src->imageData + src->widthStep * i;
for(int j = 0; j < width; j++)
{
histogram[*p++]++;
}
}
//normalize histogram
int size = height * width;
for(int i = 0; i < 256; i++)
{
histogram[i] = histogram[i] / size;
}
//average pixel value
float avgValue=0;
for(int i=0; i < 256; i++)
{
avgValue += i * histogram[i]; //整幅图像的平均灰度
}
int threshold;
float maxVariance=0;
float w = 0, u = 0;
for(int i = 0; i < 256; i++)
{
w += histogram[i]; //假设当前灰度i为阈值, 0~i 灰度的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的比例
u += i * histogram[i]; // 灰度i 之前的像素(0~i)的平均灰度值: 前景像素的平均灰度值
float t = avgValue * w - u;
float variance = t * t / (w * (1 - w) );
if(variance > maxVariance)
{
maxVariance = variance;
threshold = i;
}
}
return threshold;
}
int main()
{
IplImage *img = cvLoadImage("d:\\twowangqiu.jpg", 0);
IplImage *bin = cvCreateImage(cvGetSize(img), 8, 1);
int thresh = Otsu(img);
cvThreshold(img, bin, thresh, 255, CV_THRESH_BINARY);
FillInternalContours(bin, 200);
cvNamedWindow("img");
cvShowImage("img", img);
cvNamedWindow("result");
cvShowImage("result", bin);
cvWaitKey(-1);
cvReleaseImage(&img);
cvReleaseImage(&bin);
return 0;
}
这篇关于opencv识别两个网球的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!