PyTorch中使用预训练的模型初始化网络的一部分参数(增减网络层,修改某层参数等) 固定参数

本文主要是介绍PyTorch中使用预训练的模型初始化网络的一部分参数(增减网络层,修改某层参数等) 固定参数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在预训练网络的基础上,修改部分层得到自己的网络,通常我们需要解决的问题包括: 
1. 从预训练的模型加载参数 
2. 对新网络两部分设置不同的学习率,主要训练自己添加的层 

一. 加载参数的方法: 
加载参数可以参考apaszke推荐的做法,即删除与当前model不匹配的key。代码片段为:

model = ...
model_dict = model.state_dict()# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)


二. 不同层设置不同学习率的方法 
此部分主要参考PyTorch教程的Autograd machnics部分 
2.1 在PyTorch中,每个Variable数据含有两个flag(requires_grad和volatile)用于指示是否计算此Variable的梯度。设置requires_grad = False,或者设置volatile=True,即可指示不计算此Variable的梯度:

for param in model.parameters():param.requires_grad = False


注意,在模型测试时,对input_data设置volatile=True,可以节省测试时的显存 
2.2 PyTorch的Module.modules()和Module.children() 
参考PyTorch document和discuss 
在PyTorch中,所有的neural network module都是class torch.nn.Module的子类,在Modules中可以包含其它的Modules,以一种树状结构进行嵌套。当需要返回神经网络中的各个模块时,Module.modules()方法返回网络中所有模块的一个iterator,而Module.children()方法返回所有直接子模块的一个iterator。具体而言:

list(nn.Sequential(nn.Linear(10, 20), nn.ReLU()).modules())
Out[9]:
[Sequential ((0): Linear (10 -> 20)(1): ReLU ()), Linear (10 -> 20), ReLU ()]In [10]: list(nn.Sequential(nn.Linear(10, 20), nn.ReLU()).children())
Out[10]: [Linear (10 -> 20), ReLU ()]


2.3 选择特定的层进行finetune 
先使用Module.children()方法查看网络的直接子模块,将不需要调整的模块中的参数设置为param.requires_grad = False,同时用一个list收集需要调整的模块中的参数。具体代码为:

count = 0para_optim = []for k in model.children():count += 1# 6 should be changed properlyif count > 6:for param in k.parameters():para_optim.append(param)else:for param in k.parameters():param.requires_grad = False
optimizer = optim.RMSprop(para_optim, lr)



到此我们实现了PyTorch中使用预训练的模型初始化网络的一部分参数,参考代码见我的GitHub:
--------------------- 
作者:乐兮山南水北 
来源:CSDN 
原文:https://blog.csdn.net/u012494820/article/details/79068625 
版权声明:本文为博主原创文章,转载请附上博文链接!

有的时候我们需要对预训练的模型增减一些网络层或着修改某些层的参数等

一、pytorch中的pre-train模型
卷积神经网络的训练是耗时的,很多场合不可能每次都从随机初始化参数开始训练网络。
pytorch中自带几种常用的深度学习网络预训练模型,如VGG、ResNet等。往往为了加快学习的进度,在训练的初期我们直接加载pre-train模型中预先训练好的参数,model的加载如下所示:

import torchvision.models as models#resnet
model = models.ResNet(pretrained=True)
model = models.resnet18(pretrained=True)
model = models.resnet34(pretrained=True)
model = models.resnet50(pretrained=True)#vgg
model = models.VGG(pretrained=True)
model = models.vgg11(pretrained=True)
model = models.vgg16(pretrained=True)
model = models.vgg16_bn(pretrained=True)


二、预训练模型的修改
1.参数修改
对于简单的参数修改,这里以resnet预训练模型举例,resnet源代码在Github点击打开链接。
resnet网络最后一层分类层fc是对1000种类型进行划分,对于自己的数据集,如果只有9类,修改的代码如下:

# coding=UTF-8
import torchvision.models as models#调用模型
model = models.resnet50(pretrained=True)
#提取fc层中固定的参数
fc_features = model.fc.in_features
#修改类别为9
model.fc = nn.Linear(fc_features, 9)

2.增减卷积层
前一种方法只适用于简单的参数修改,有的时候我们往往要修改网络中的层次结构,这时只能用参数覆盖的方法,即自己先定义一个类似的网络,再将预训练中的参数提取到自己的网络中来。这里以resnet预训练模型举例。

# coding=UTF-8
import torchvision.models as models
import torch
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zooclass CNN(nn.Module):def __init__(self, block, layers, num_classes=9):self.inplanes = 64super(ResNet, self).__init__()self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(block, 64, layers[0])self.layer2 = self._make_layer(block, 128, layers[1], stride=2)self.layer3 = self._make_layer(block, 256, layers[2], stride=2)self.layer4 = self._make_layer(block, 512, layers[3], stride=2)self.avgpool = nn.AvgPool2d(7, stride=1)#新增一个反卷积层self.convtranspose1 = nn.ConvTranspose2d(2048, 2048, kernel_size=3, stride=1, padding=1, output_padding=0, groups=1, bias=False, dilation=1)#新增一个最大池化层self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)#去掉原来的fc层,新增一个fclass层self.fclass = nn.Linear(2048, num_classes)for m in self.modules():if isinstance(m, nn.Conv2d):n = m.kernel_size[0] * m.kernel_size[1] * m.out_channelsm.weight.data.normal_(0, math.sqrt(2. / n))elif isinstance(m, nn.BatchNorm2d):m.weight.data.fill_(1)m.bias.data.zero_()def _make_layer(self, block, planes, blocks, stride=1):downsample = Noneif stride != 1 or self.inplanes != planes * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.inplanes, planes * block.expansion,kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(planes * block.expansion),)layers = []layers.append(block(self.inplanes, planes, stride, downsample))self.inplanes = planes * block.expansionfor i in range(1, blocks):layers.append(block(self.inplanes, planes))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)#新加层的forwardx = x.view(x.size(0), -1)x = self.convtranspose1(x)x = self.maxpool2(x)x = x.view(x.size(0), -1)x = self.fclass(x)return x#加载model
resnet50 = models.resnet50(pretrained=True)
cnn = CNN(Bottleneck, [3, 4, 6, 3])
#读取参数
pretrained_dict = resnet50.state_dict()
model_dict = cnn.state_dict()
# 将pretrained_dict里不属于model_dict的键剔除掉
pretrained_dict =  {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 更新现有的model_dict
model_dict.update(pretrained_dict)
# 加载我们真正需要的state_dict
cnn.load_state_dict(model_dict)
# print(resnet50)
print(cnn)


--------------------- 
作者:whut_ldz 
来源:CSDN 
原文:https://blog.csdn.net/whut_ldz/article/details/78845947 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于PyTorch中使用预训练的模型初始化网络的一部分参数(增减网络层,修改某层参数等) 固定参数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933612

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学