文本比较算法Ⅰ——LD算法

2024-04-24 22:38
文章标签 算法 比较 文本 ld

本文主要是介绍文本比较算法Ⅰ——LD算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在日常应用中,文本比较是一个比较常见的问题。文本比较算法也是一个老生常谈的话题。

  文本比较的核心就是比较两个给定的文本(可以是字节流等)之间的差异。目前,主流的比较文本之间的差异主要有两大类。一类是基于编辑距离(Edit Distance)的,例如LD算法。一类是基于最长公共子串的(Longest Common Subsequence),例如Needleman/Wunsch算法等。

  LD算法(Levenshtein Distance)又成为编辑距离算法(Edit Distance)。他是以字符串A通过插入字符、删除字符、替换字符变成另一个字符串B,那么操作的过程的次数表示两个字符串的差异。

  例如:字符串A:kitten如何变成字符串B:sitting。

    第一步:kitten——》sitten。k替换成s

    第二步:sitten——》sittin。e替换成i

    第三步:sittin——》sitting。在末尾插入g

  故kitten和sitting的编辑距离为3

 

  定义说明:

  LD(A,B)表示字符串A和字符串B的编辑距离。很显然,若LD(A,B)=0表示字符串A和字符串B完全相同

  Rev(A)表示反转字符串A

  Len(A)表示字符串A的长度

  A+B表示连接字符串A和字符串B

  

  有下面几个性质:

  LD(A,A)=0

  LD(A,"")=Len(A)

  LD(A,B)=LD(B,A)

  0≤LD(A,B)≤Max(Len(A),Len(B))

  LD(A,B)=LD(Rev(A),Rev(B))

  LD(A+C,B+C)=LD(A,B)

  LD(A+B,A+C)=LD(B,C)

  LD(A,B)≤LD(A,C)+LD(B,C)(注:像不像“三角形,两边之和大于第三边”)

  LD(A+C,B)≤LD(A,B)+LD(B,C)

 

  为了讲解计算LD(A,B),特给予以下几个定义

  A=a1a2……aN,表示A是由a1a2……aN这N个字符组成,Len(A)=N

  B=b1b2……bM,表示B是由b1b2……bM这M个字符组成,Len(B)=M

  定义LD(i,j)=LD(a1a2……ai,b1b2……bj),其中0≤i≤N,0≤j≤M

  故:  LD(N,M)=LD(A,B)

      LD(0,0)=0

      LD(0,j)=j

      LD(i,0)=i

 

  对于1≤i≤N,1≤j≤M,有公式一

  若ai=bj,则LD(i,j)=LD(i-1,j-1)

  若ai≠bj,则LD(i,j)=Min(LD(i-1,j-1),LD(i-1,j),LD(i,j-1))+1

 

  举例说明:A=GGATCGA,B=GAATTCAGTTA,计算LD(A,B)

  第一步:初始化LD矩阵  

 

LD算法矩阵
  GAATTCAGTTA
 01234567891011
G1           
G2           
A3           
T4           
C5           
G6           
A7           

 

  第二步:利用上述的公式一,计算第一行

 

LD算法矩阵
  GAATTCAGTTA
 01234567891011
G1012345678910
G2           
A3           
T4           
C5           
G6           
A7           

 

  第三步,利用上述的公示一,计算其余各行 

LD算法矩阵
  GAATTCAGTTA
 01234567891011
G1012345678910
G211234566789
A321123456788
T432212345678
C543322234567
G654433333456
A765444434455

 

  则LD(A,B)=LD(7,11)=5

 

  下面是LD算法的代码,用的是VB2005。代码格式修正于2012年1月6日。


Public Class clsLD
  Private Shared mA() As Char
  Private Shared mB() As Char
  Public Shared Function LD(ByVal A As String, ByVal B As String) As Integer
    mA = A.ToCharArray
    mB = B.ToCharArray
    Dim L(A.Length, B.Length) As Integer
    Dim i As Integer, j As Integer
    For i = 1 To A.Length
      L(i, 0) = i
    Next
    For j = 1 To B.Length
      L(0, j) = j
    Next
    For i = 1 To A.Length
      For j = 1 To B.Length
        If mA(i - 1) = mB(j - 1) Then
          L(i, j) = L(i - 1, j - 1)
        Else
          L(i, j) = Min(L(i - 1, j - 1), L(i - 1, j), L(i, j - 1)) + 1
        End If
      Next
    Next
    Return L(A.Length, B.Length)
  End Function
  Public Shared Function Min(ByVal A As Integer, ByVal B As Integer, ByVal C As Integer) As Integer
    Dim I As Integer = A
    If I > B Then I = B
    If I > C Then I = C
    Return I
  End Function
End Class

 

  这个LD算法时间复杂度为O(MN),空间复杂度为O(MN),如果进行优化的话,空间复杂度可以为O(M),优化的代码这里不再详述了。参看“计算字符串的相似度(VB2005)”

  我们往往不仅仅是计算出字符串A和字符串B的编辑距离,还要能得出他们的匹配结果。

  以上面为例A=GGATCGA,B=GAATTCAGTTA,LD(A,B)=5

  他们的匹配为:

    A:GGA_TC_G__A

    B:GAATTCAGTTA

  如上面所示,蓝色表示完全匹配,黑色表示编辑操作,_表示插入字符或者是删除字符操作。如上面所示,黑色字符有5个,表示编辑距离为5。

  利用上面的LD矩阵,通过回溯,能找到匹配字串

  第一步:定位在矩阵的右下角  

LD算法矩阵
  GAATTCAGTTA
 01234567891011
G1012345678910
G211234566789
A321123456788
T432212345678
C543322234567
G654433333456
A765444434455

 

  第二步:回溯单元格,至矩阵的左上角

    若ai=bj,则回溯到左上角单元格

LD算法矩阵
  GAATTCAGTTA
 01234567891011
G1012345678910
G211234566789
A321123456788
T432212345678
C543322234567
G654433333456
A765444434455

    若ai≠bj,回溯到左上角、上边、左边中值最小的单元格,若有相同最小值的单元格,优先级按照左上角、上边、左边的顺序

LD算法矩阵
  GAATTCAGTTA
 01234567891011
G1012345678910
G211234566789
A321123456788
T432212345678
C543322234567
G654433333456
A765444434455

    若当前单元格是在矩阵的第一行,则回溯至左边的单元格

    若当前单元格是在矩阵的第一列,则回溯至上边的单元格

LD算法矩阵
  GAATTCAGTTA
 01234567891011
G1012345678910
G211234566789
A321123456788
T432212345678
C543322234567
G654433333456
A765444434455

    依照上面的回溯法则,回溯到矩阵的左上角

  第三步:根据回溯路径,写出匹配字串

    若回溯到左上角单元格,将ai添加到匹配字串A,将bj添加到匹配字串B

    若回溯到上边单元格,将ai添加到匹配字串A,将_添加到匹配字串B

    若回溯到左边单元格,将_添加到匹配字串A,将bj添加到匹配字串B

    搜索晚整个匹配路径,匹配字串也就完成了

 

  从上面可以看出,LD算法在不需要计算出匹配字串的话,时间复杂度为O(MN),空间复杂度经优化后为O(M)

  不过,如果要计算匹配字符串的话,时间复杂度为O(MN),空间复杂度由于需要利用LD矩阵计算匹配路径,故空间复杂度仍然为O(MN)。这个在两个字符串都比较短小的情况下,能获得不错的性能。不过,如果字符串比较长的情况下,就需要极大的空间存放矩阵。例如:两个字符串都是20000字符,则LD矩阵的大小为20000*20000*2=800000000Byte=800MB。呵呵,这是什么概念?故,在比较长字符串的时候,还有其他性能更好的算法。留待后文详述。

作者:万仓一黍
出处:http://grenet.cnblogs.com/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

这篇关于文本比较算法Ⅰ——LD算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/933029

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Java实现将Markdown转换为纯文本

《Java实现将Markdown转换为纯文本》这篇文章主要为大家详细介绍了两种在Java中实现Markdown转纯文本的主流方法,文中的示例代码讲解详细,大家可以根据需求选择适合的方案... 目录方法一:使用正则表达式(轻量级方案)方法二:使用 Flexmark-Java 库(专业方案)1. 添加依赖(Ma

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1