Python检验样本是否服从正态分布

2024-04-24 20:38

本文主要是介绍Python检验样本是否服从正态分布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在进行t检验、F检验之前,我们往往要求样本大致服从正态分布,下面介绍两种检验样本是否服从正态分布的方法。

1 可视化

我们可以通过将样本可视化,看一下样本的概率密度是否是正态分布来初步判断样本是否服从正态分布。

代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 使用pandas和numpy生成一组仿真数据
s = pd.DataFrame(np.random.randn(500),columns=['value'])
print(s.shape)      # (500, 1)# 创建自定义图像
fig = plt.figure(figsize=(10, 6))
# 创建子图1
ax1 = fig.add_subplot(2,1,1)
# 绘制散点图
ax1.scatter(s.index, s.values)
plt.grid()      # 添加网格# 创建子图2
ax2 = fig.add_subplot(2, 1, 2)
# 绘制直方图
s.hist(bins=30,alpha=0.5,ax=ax2)
# 绘制密度图
s.plot(kind='kde', secondary_y=True,ax=ax2)     # 使用双坐标轴
plt.grid()      # 添加网格# 显示自定义图像
plt.show()

 可视化图像如下:

从图中可以初步看出生成的数据近似服从正态分布。为了得到更具说服力的结果,我们可以使用统计检验的方法,这里使用的是.scipy.stats中的函数。

2 统计检验

1)kstest

scipy.stats.kstest函数可用于检验样本是否服从正态、指数、伽马等分布,函数的源代码为:

def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'):"""Perform the Kolmogorov-Smirnov test for goodness of fit.This performs a test of the distribution F(x) of an observedrandom variable against a given distribution G(x). Under the nullhypothesis the two distributions are identical, F(x)=G(x). Thealternative hypothesis can be either 'two-sided' (default), 'less'or 'greater'. The KS test is only valid for continuous distributions.Parameters----------rvs : str, array or callableIf a string, it should be the name of a distribution in `scipy.stats`.If an array, it should be a 1-D array of observations of randomvariables.If a callable, it should be a function to generate random variables;it is required to have a keyword argument `size`.cdf : str or callableIf a string, it should be the name of a distribution in `scipy.stats`.If `rvs` is a string then `cdf` can be False or the same as `rvs`.If a callable, that callable is used to calculate the cdf.args : tuple, sequence, optionalDistribution parameters, used if `rvs` or `cdf` are strings.N : int, optionalSample size if `rvs` is string or callable.  Default is 20.alternative : {'two-sided', 'less','greater'}, optionalDefines the alternative hypothesis (see explanation above).Default is 'two-sided'.mode : 'approx' (default) or 'asymp', optionalDefines the distribution used for calculating the p-value.- 'approx' : use approximation to exact distribution of test statistic- 'asymp' : use asymptotic distribution of test statisticReturns-------statistic : floatKS test statistic, either D, D+ or D-.pvalue :  floatOne-tailed or two-tailed p-value.

2)normaltest

scipy.stats.normaltest函数专门用于检验样本是否服从正态分布,函数的源代码为:

def normaltest(a, axis=0, nan_policy='propagate'):"""Test whether a sample differs from a normal distribution.This function tests the null hypothesis that a sample comesfrom a normal distribution.  It is based on D'Agostino andPearson's [1]_, [2]_ test that combines skew and kurtosis toproduce an omnibus test of normality.Parameters----------a : array_likeThe array containing the sample to be tested.axis : int or None, optionalAxis along which to compute test. Default is 0. If None,compute over the whole array `a`.nan_policy : {'propagate', 'raise', 'omit'}, optionalDefines how to handle when input contains nan. 'propagate' returns nan,'raise' throws an error, 'omit' performs the calculations ignoring nanvalues. Default is 'propagate'.Returns-------statistic : float or array``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and``k`` is the z-score returned by `kurtosistest`.pvalue : float or arrayA 2-sided chi squared probability for the hypothesis test.

3)shapiro

scipy.stats.shapiro函数也是用于专门做正态检验的,函数的源代码为:

def shapiro(x):"""Perform the Shapiro-Wilk test for normality.The Shapiro-Wilk test tests the null hypothesis that thedata was drawn from a normal distribution.Parameters----------x : array_likeArray of sample data.Returns-------W : floatThe test statistic.p-value : floatThe p-value for the hypothesis test.

下面我们使用第一部分生成的仿真数据,用这三种统计检验函数检验生成的样本是否服从正态分布(p > 0.05),代码如下:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 使用pandas和numpy生成一组仿真数据
s = pd.DataFrame(np.random.randn(500),columns=['value'])
print(s.shape)      # (500, 1)# 计算均值
u = s['value'].mean()
# 计算标准差
std = s['value'].std()  # 计算标准差
print('scipy.stats.kstest统计检验结果:----------------------------------------------------')
print(stats.kstest(s['value'], 'norm', (u, std)))
print('scipy.stats.normaltest统计检验结果:----------------------------------------------------')
print(stats.normaltest(s['value']))
print('scipy.stats.shapiro统计检验结果:----------------------------------------------------')
print(stats.shapiro(s['value']))

统计检验结果如下:

scipy.stats.kstest统计检验结果:----------------------------------------------------
KstestResult(statistic=0.01596290473494305, pvalue=0.9995623150120069)
scipy.stats.normaltest统计检验结果:----------------------------------------------------
NormaltestResult(statistic=0.5561685865675511, pvalue=0.7572329891688141)
scipy.stats.shapiro统计检验结果:----------------------------------------------------
(0.9985257983207703, 0.9540967345237732)

可以看到使用三种方法检验样本是否服从正态分布的结果中p-value都大于0.05,说明服从原假设,即生成的仿真数据服从正态分布。

参考

python数据分析----卡方检验,T检验,F检验,K-S检验

python使用scipy.stats数据(正态)分布检验方法

python 如何判断一组数据是否符合正态分布

这篇关于Python检验样本是否服从正态分布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932792

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专