python批量计算cosine distance

2024-04-24 20:38

本文主要是介绍python批量计算cosine distance,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们在做推荐或者信息检索任务时经常需要比较项目嵌入和项目嵌入之间或者用户嵌入和项目嵌入之间的相似度,然后进行推荐。余弦相似度的计算公式如下:

余弦相似度cosine similarity和余弦距离cosine distance是相似度度量中常用的两个指标,我们可以用sklearn.metrics.pairwise下的cosine_similarity和paired_distances函数分别计算两个向量之间的余弦相似度和余弦距离,效果如下:

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity, paired_distancesx = np.array([[0.26304135, 0.91725843, 0.61099966, 0.40816231, 0.93606288, 0.52462691]])
print(x)
y = np.array([[0.03756129, 0.50223667, 0.66529424, 0.57392135, 0.20479857, 0.27286363]])
print(y)
# 余弦相似度
simi = cosine_similarity(x, y)
print('cosine similarity:', simi)
# 余弦距离 = 1 - 余弦相似度
dist = paired_distances(x, y, metric='cosine')
print('cosine distance:', dist)

这里可以看到,余弦相似度 + 余弦距离 = 1。

 我们试一下用cosine_similarity和paired_distances函数分别计算多个向量与一个向量的余弦相似度和余弦距离,效果如下:

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity, paired_distancesx = np.array([[0.26304135, 0.91725843, 0.61099966, 0.40816231, 0.93606288, 0.52462691], [0.26304135, 0.91725843, 0.61099966, 0.40816231, 0.93606288, 0.52462691]])
print(x)
y = np.array([[0.03756129, 0.50223667, 0.66529424, 0.57392135, 0.20479857, 0.27286363]])
print(y)
# 余弦相似度
simi = cosine_similarity(x, y)
print('cosine similarity:', simi)
# 余弦距离 = 1 - 余弦相似度
dist = paired_distances(x, y, metric='cosine')
print('cosine distance:', dist)

可以看到这里余弦相似度可以正常计算,但在计算余弦距离时报错。 

现在我们自己写程序批量计算多个向量与多个向量之间的余弦相似度和余弦距离,效果如下:

def distCosine(x, y):""":param x: m x k array:param y: n x k array:return: m x n array"""xx = np.sum(x ** 2, axis=1) ** 0.5x = x / xx[:, np.newaxis]yy = np.sum(y ** 2, axis=1) ** 0.5y = y / yy[:, np.newaxis]dist = 1 - np.dot(x, y.transpose())  # 1 - 余弦距离return distx = np.random.rand(10, 6)
print(x)
y = np.random.rand(5, 6)
print(y)
dist = distCosine(x, y)
print(dist)

 我们测试一下写的程序计算的余弦距离是否和paired_distances函数计算的一致,以第一行为例:

import numpy as np
from sklearn.metrics.pairwise import paired_distances# x
x1 = np.array([[0.80752941, 0.53856979, 0.23620606, 0.19540647, 0.7920776, 0.00918439]])
x10 = np.array([[0.84784528, 0.69746047, 0.91245773, 0.27064697, 0.3165476, 0.85158265]])
# y
y1 = np.array([[0.21375023, 0.13551058, 0.93240456, 0.50134001, 0.8600716, 0.19956772]])
y5 = np.array([[0.60785337, 0.73592292, 0.57753456, 0.07512202, 0.82074906, 0.57231335]])# 余弦距离 = 1 - 余弦相似度
dist1_1 = paired_distances(x1, y1, metric='cosine')
print('cosine distance:', dist1_1)
dist10_5 = paired_distances(x10, y5, metric='cosine')
print('cosine distance:', dist10_5)

可以看出计算结果是正确的,请放心使用。 

这篇关于python批量计算cosine distance的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932787

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip