本文主要是介绍基于YOLOv8+Pyqt5火焰烟雾检测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1、YOLOv8的基本原理
YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。其主要网络结构如下:
2、软件主要功能
- 可进行火焰、烟雾及正常这3种状态的目标检测;
- 支持图片、视频及摄像头进行检测,同时支持图片的批量检测;
- 界面可实时显示目标位置、目标总数、置信度、用时等信息;
- 支持图片或者视频的检测结果保存;
3、数据集与训练
通过网络上搜集关于火焰及烟雾的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含979张图片,其中训练集包含877张图片,验证集包含47张图片,测试集包含55张图片部分图像及标注。
图片数据的存放格式如下,在项目目录中新建datasets目录,同时将跌倒检测的图片分为训练集与验证集放入helmetData目录下。
同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:
train: E:\MyCVProgram\FireSmokeDetection\datasets\FireSmokeData\train # train images (relative to 'path') 128 images
val: E:\MyCVProgram\FireSmokeDetection\datasets\FireSmokeData\val # val images (relative to 'path') 128 images
test: E:\MyCVProgram\FireSmokeDetection\datasets\FireSmokeData\test # val images (optional)# number of classes
nc: 3# Classes
names: ['Fire', 'default', 'smoke']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
# 加载模型
model = YOLO("yolov8n.pt") # 加载预训练模型
# Use the model
if __name__ == '__main__':# Use the modelresults = model.train(data='datasets/FireSmokeData/data.yaml', epochs=250, batch=4) # 训练模型# 将模型转为onnx格式# success = model.export(format='onnx')
4、训练结果评估
YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。本文训练结果如下:
PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5已经达到了0.87以上,平均值为0.89,结果还是很不错的。
5、界面展示
6. 检测结果识别
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。图片检测代码如下:
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/fire2_mp4-28_jpg.rf.27cad783f34b8f9f162d91a0c5776350.jpg"# 加载预训练模型
# conf 0.25 object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)
7、结束语
以上便是博主开发的基于YOLOv8深度学习的火焰烟雾检测系统的部分内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!
这篇关于基于YOLOv8+Pyqt5火焰烟雾检测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!